Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze
Thomas Iosifidis, Erika N. Sutanto, Alysia G. Buckley, Laura Coleman, Erin E. Gill, Amy H. Lee, Kak-Ming Ling, Jessica Hillas, Kevin Looi, Luke W. Garratt, Kelly M. Martinovich, Nicole C. Shaw, Samuel T. Montgomery, Elizabeth Kicic-Starcevich, Yuliya V. Karpievitch, Peter Le Souëf, Ingrid A. Laing, Shyan Vijayasekaran, Francis J. Lannigan, Paul J. Rigby, Robert E.W. Hancock, Darryl A. Knight, Stephen M. Stick, Anthony Kicic, Western Australian Epithelial Research Program (WAERP), Australian Respiratory Epithelium Consortium (AusREC)
Thomas Iosifidis, Erika N. Sutanto, Alysia G. Buckley, Laura Coleman, Erin E. Gill, Amy H. Lee, Kak-Ming Ling, Jessica Hillas, Kevin Looi, Luke W. Garratt, Kelly M. Martinovich, Nicole C. Shaw, Samuel T. Montgomery, Elizabeth Kicic-Starcevich, Yuliya V. Karpievitch, Peter Le Souëf, Ingrid A. Laing, Shyan Vijayasekaran, Francis J. Lannigan, Paul J. Rigby, Robert E.W. Hancock, Darryl A. Knight, Stephen M. Stick, Anthony Kicic, Western Australian Epithelial Research Program (WAERP), Australian Respiratory Epithelium Consortium (AusREC)
View: Text | PDF
Research Article Cell biology Pulmonology

Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze

  • Text
  • PDF
Abstract

Abnormal wound repair has been observed in the airway epithelium of patients with chronic respiratory diseases, including asthma. Therapies focusing on repairing vulnerable airways, particularly in early life, present a potentially novel treatment strategy. We report defective lower airway epithelial cell repair to strongly associate with common pre–school-aged and school-aged wheezing phenotypes, characterized by aberrant migration patterns and reduced integrin α5β1 expression. Next generation sequencing identified the PI3K/Akt pathway as the top upstream transcriptional regulator of integrin α5β1, where Akt activation enhanced repair and integrin α5β1 expression in primary cultures from children with wheeze. Conversely, inhibition of PI3K/Akt signaling in primary cultures from children without wheeze reduced α5β1 expression and attenuated repair. Importantly, the FDA-approved drug celecoxib — and its non–COX2-inhibiting analogue, dimethyl-celecoxib — stimulated the PI3K/Akt–integrin α5β1 axis and restored airway epithelial repair in cells from children with wheeze. When compared with published clinical data sets, the identified transcriptomic signature was also associated with viral-induced wheeze exacerbations highlighting the clinical potential of such therapy. Collectively, these results identify airway epithelial restitution via targeting the PI3K–integrin α5β1 axis as a potentially novel therapeutic avenue for childhood wheeze and asthma. We propose that the next step in the therapeutic development process should be a proof-of-concept clinical trial, since relevant animal models to test the crucial underlying premise are unavailable.

Authors

Thomas Iosifidis, Erika N. Sutanto, Alysia G. Buckley, Laura Coleman, Erin E. Gill, Amy H. Lee, Kak-Ming Ling, Jessica Hillas, Kevin Looi, Luke W. Garratt, Kelly M. Martinovich, Nicole C. Shaw, Samuel T. Montgomery, Elizabeth Kicic-Starcevich, Yuliya V. Karpievitch, Peter Le Souëf, Ingrid A. Laing, Shyan Vijayasekaran, Francis J. Lannigan, Paul J. Rigby, Robert E.W. Hancock, Darryl A. Knight, Stephen M. Stick, Anthony Kicic, Western Australian Epithelial Research Program (WAERP), Australian Respiratory Epithelium Consortium (AusREC)

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts