Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels
Ayumi Kanno, … , Masato Kasuga, Yoshiaki Kido
Ayumi Kanno, … , Masato Kasuga, Yoshiaki Kido
Published May 7, 2020
Citation Information: JCI Insight. 2020;5(9):e128820. https://doi.org/10.1172/jci.insight.128820.
View: Text | PDF
Research Article Endocrinology Metabolism

GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels

  • Text
  • PDF
Abstract

EIF2AK4, which encodes the amino acid deficiency–sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic β cell mass. Our data suggest that GCN2 senses amino acid deficiency in β cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent β cell failure during the consumption of a high-fat diet.

Authors

Ayumi Kanno, Shun-ichiro Asahara, Ayuko Furubayashi, Katsuhisa Masuda, Risa Yoshitomi, Emi Suzuki, Tomoko Takai, Maki Kimura-Koyanagi, Tomokazu Matsuda, Alberto Bartolome, Yushi Hirota, Norihide Yokoi, Yuka Inaba, Hiroshi Inoue, Michihiro Matsumoto, Kenichi Inoue, Takaya Abe, Fan-Yan Wei, Kazuhito Tomizawa, Wataru Ogawa, Susumu Seino, Masato Kasuga, Yoshiaki Kido

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts