Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1–dependent mechanism
Malik Hamaidia, Hélène Gazon, Clotilde Hoyos, Gabriela Brunsting Hoffmann, Renaud Louis, Bernard Duysinx, Luc Willems
Malik Hamaidia, Hélène Gazon, Clotilde Hoyos, Gabriela Brunsting Hoffmann, Renaud Louis, Bernard Duysinx, Luc Willems
View: Text | PDF
Research Article Cell biology Immunology

Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1–dependent mechanism

  • Text
  • PDF
Abstract

The roles of macrophages in orchestrating innate immunity through phagocytosis and T lymphocyte activation have been extensively investigated. Much less understood is the unexpected role of macrophages in direct tumor regression. Tumoricidal macrophages can indeed manifest cancer immunoediting activity in the absence of adaptive immunity. We investigated direct macrophage cytotoxicity in malignant pleural mesothelioma, a lethal cancer that develops from mesothelial cells of the pleural cavity after occupational asbestos exposure. In particular, we analyzed the cytotoxic activity of mouse RAW264.7 macrophages upon cell-cell contact with autologous AB1/AB12 mesothelioma cells. We show that macrophages killed mesothelioma cells by oxeiptosis via a mechanism involving enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27–specific (H3K27-specific) methyltransferase of the polycomb repressive complex 2 (PRC2). A selective inhibitor of EZH2 indeed impaired RAW264.7-directed cytotoxicity and concomitantly stimulated the PD-1 immune checkpoint. In the immunocompetent BALB/c model, RAW264.7 macrophages pretreated with the EZH2 inhibitor failed to control tumor growth of AB1 and AB12 mesothelioma cells. Blockade of PD-1 engagement restored macrophage-dependent antitumor activity. We conclude that macrophages can be directly cytotoxic for mesothelioma cells independent of phagocytosis. Inhibition of the PRC2 EZH2 methyltransferase reduces this activity because of PD-1 overexpression. Combination of PD-1 blockade and EZH2 inhibition restores macrophage cytotoxicity.

Authors

Malik Hamaidia, Hélène Gazon, Clotilde Hoyos, Gabriela Brunsting Hoffmann, Renaud Louis, Bernard Duysinx, Luc Willems

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts