Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms’ tumor
Michael V. Ortiz, Saima Ahmed, Melissa Burns, Anton G. Henssen, Travis J. Hollmann, Ian MacArthur, Shehana Gunasekera, Lyvia Gaewsky, Gary Bradwin, Jeremy Ryan, Anthony Letai, Ying He, Arlene Naranjo, Yueh-Yun Chi, Michael LaQuaglia, Todd Heaton, Paolo Cifani, Jeffrey S. Dome, Samantha Gadd, Elizabeth Perlman, Elizabeth Mullen, Hanno Steen, Alex Kentsis
Michael V. Ortiz, Saima Ahmed, Melissa Burns, Anton G. Henssen, Travis J. Hollmann, Ian MacArthur, Shehana Gunasekera, Lyvia Gaewsky, Gary Bradwin, Jeremy Ryan, Anthony Letai, Ying He, Arlene Naranjo, Yueh-Yun Chi, Michael LaQuaglia, Todd Heaton, Paolo Cifani, Jeffrey S. Dome, Samantha Gadd, Elizabeth Perlman, Elizabeth Mullen, Hanno Steen, Alex Kentsis
View: Text | PDF
Research Article Cell biology Oncology

Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms’ tumor

  • Text
  • PDF
Abstract

Wilms’ tumor is the most common type of childhood kidney cancer. To improve risk stratification and identify novel therapeutic targets for patients with Wilms’ tumor, we used high-resolution mass spectrometry proteomics to identify urine tumor markers associated with Wilms’ tumor relapse. We determined the urine proteomes at diagnosis of 49 patients with Wilms’ tumor, non–Wilms’ tumor renal tumors, and age-matched controls, leading to the quantitation of 6520 urine proteins. Supervised analysis revealed specific urine markers of renal rhabdoid tumors, kidney clear cell sarcomas, renal cell carcinomas as well as those detected in patients with cured and relapsed Wilms’ tumor. In particular, urine prohibitin was significantly elevated at diagnosis in patients with relapsed as compared with cured Wilms’ tumor. In a validation cohort of 139 patients, a specific urine prohibitin ELISA demonstrated that prohibitin concentrations greater than 998 ng/mL at diagnosis were significantly associated with ultimate Wilms’ tumor relapse. Immunohistochemical analysis revealed that prohibitin was highly expressed in primary Wilms’ tumor specimens and associated with disease stage. Using functional genetic experiments, we found that prohibitin was required for the growth and survival of Wilms’ tumor cells. Overexpression of prohibitin was sufficient to block intrinsic mitochondrial apoptosis and to cause resistance to diverse chemotherapy drugs, at least in part by dysregulating factors that control apoptotic cytochrome c release from mitochondrial cristae. Thus, urine prohibitin may improve therapy stratification, noninvasive monitoring of treatment response, and early disease detection. In addition, therapeutic targeting of chemotherapy resistance induced by prohibitin dysregulation may offer improved therapies for patients with Wilms’ and other relapsed or refractory tumors.

Authors

Michael V. Ortiz, Saima Ahmed, Melissa Burns, Anton G. Henssen, Travis J. Hollmann, Ian MacArthur, Shehana Gunasekera, Lyvia Gaewsky, Gary Bradwin, Jeremy Ryan, Anthony Letai, Ying He, Arlene Naranjo, Yueh-Yun Chi, Michael LaQuaglia, Todd Heaton, Paolo Cifani, Jeffrey S. Dome, Samantha Gadd, Elizabeth Perlman, Elizabeth Mullen, Hanno Steen, Alex Kentsis

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts