Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Increased attrition of memory T cells during sepsis requires 2B4
Jianfeng Xie, … , Craig M. Coopersmith, Mandy L. Ford
Jianfeng Xie, … , Craig M. Coopersmith, Mandy L. Ford
Published May 2, 2019
Citation Information: JCI Insight. 2019;4(9):e126030. https://doi.org/10.1172/jci.insight.126030.
View: Text | PDF
Research Article Immunology Infectious disease

Increased attrition of memory T cells during sepsis requires 2B4

  • Text
  • PDF
Abstract

Recent seminal studies have revealed that laboratory mice differ from adult humans with regard to the frequency, number, and distribution of memory T cells. Because our data show that memory T cells are more susceptible to sepsis-induced death than naive T cells, in this study we developed a model in which mice possess a memory T cell compartment more similar to that of adult humans, to better study immune responses during sepsis in the more physiologically relevant context of high frequencies of memory T cells. Using this model, we found that CD44hi memory T cells significantly upregulated the coinhibitory molecule 2B4 during sepsis, and 2B4+ memory T cells coexpressed markers of both activation and exhaustion. Genetic deficiency in 2B4 resulted in decreased mortality during sepsis. Mechanistically, this decreased mortality was associated with reduced caspase-3/7+ apoptotic T cells in 2B4–/– relative to WT, septic hosts. These results were corroborated by analysis of PBMCs isolated from human patients with sepsis, which showed increased frequencies of caspase-3/7+ apoptotic cells among 2B4+ relative to 2B4– T cells. Thus, 2B4 plays a critical role in sepsis-induced apoptosis in both murine memory T cells and those isolated from human patients with sepsis.

Authors

Jianfeng Xie, Ching-wen Chen, Yini Sun, Sonia J. Laurie, Wenxiao Zhang, Shunsuke Otani, Gregory S. Martin, Craig M. Coopersmith, Mandy L. Ford

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts