Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Resident macrophages reprogram toward a developmental state after acute kidney injury
Jeremie M. Lever, Travis D. Hull, Ravindra Boddu, Mark E. Pepin, Laurence M. Black, Oreoluwa O. Adedoyin, Zhengqin Yang, Amie M. Traylor, Yanlin Jiang, Zhang Li, Jacelyn E. Peabody, Han E. Eckenrode, David K. Crossman, Michael R. Crowley, Subhashini Bolisetty, Kurt A. Zimmerman, Adam R. Wende, Michal Mrug, Bradley K. Yoder, Anupam Agarwal, James F. George
Jeremie M. Lever, Travis D. Hull, Ravindra Boddu, Mark E. Pepin, Laurence M. Black, Oreoluwa O. Adedoyin, Zhengqin Yang, Amie M. Traylor, Yanlin Jiang, Zhang Li, Jacelyn E. Peabody, Han E. Eckenrode, David K. Crossman, Michael R. Crowley, Subhashini Bolisetty, Kurt A. Zimmerman, Adam R. Wende, Michal Mrug, Bradley K. Yoder, Anupam Agarwal, James F. George
View: Text | PDF
Research Article Immunology Nephrology

Resident macrophages reprogram toward a developmental state after acute kidney injury

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow–derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII– KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.

Authors

Jeremie M. Lever, Travis D. Hull, Ravindra Boddu, Mark E. Pepin, Laurence M. Black, Oreoluwa O. Adedoyin, Zhengqin Yang, Amie M. Traylor, Yanlin Jiang, Zhang Li, Jacelyn E. Peabody, Han E. Eckenrode, David K. Crossman, Michael R. Crowley, Subhashini Bolisetty, Kurt A. Zimmerman, Adam R. Wende, Michal Mrug, Bradley K. Yoder, Anupam Agarwal, James F. George

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts