Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity
Karolina Pilipow, … , Luca Gattinoni, Enrico Lugli
Karolina Pilipow, … , Luca Gattinoni, Enrico Lugli
Published September 20, 2018
Citation Information: JCI Insight. 2018;3(18):e122299. https://doi.org/10.1172/jci.insight.122299.
View: Text | PDF
Research Article Immunology

Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity

  • Text
  • PDF
Abstract

Adoptive T cell transfer (ACT) immunotherapy benefits from early differentiated stem cell memory T (Tscm) cells capable of persisting in the long term and generating potent antitumor effectors. Due to their paucity ex vivo, Tscm cells can be derived from naive precursors, but the molecular signals at the basis of Tscm cell generation are ill-defined. We found that less differentiated human circulating CD8+ T cells display substantial antioxidant capacity ex vivo compared with more differentiated central and effector memory T cells. Limiting ROS metabolism with antioxidants during naive T cell activation hindered terminal differentiation, while allowing expansion and generation of Tscm cells. N-acetylcysteine (NAC), the most effective molecule in this regard, induced transcriptional and metabolic programs characteristic of self-renewing memory T cells. Upon ACT, NAC-generated Tscm cells established long-term memory in vivo and exerted more potent antitumor immunity in a xenogeneic model when redirected with CD19-specific CAR, highlighting the translational relevance of NAC as a simple and inexpensive method to improve ACT.

Authors

Karolina Pilipow, Eloise Scamardella, Simone Puccio, Sanjivan Gautam, Federica De Paoli, Emilia M.C. Mazza, Gabriele De Simone, Sara Polletti, Marta Buccilli, Veronica Zanon, Pietro Di Lucia, Matteo Iannacone, Luca Gattinoni, Enrico Lugli

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts