Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

FGFR1 underlies obesity-associated progression of estrogen receptor–positive breast cancer after estrogen deprivation
Elizabeth A. Wellberg, Peter Kabos, Austin E. Gillen, Britta M. Jacobsen, Heather M. Brechbuhl, Stevi J. Johnson, Michael C. Rudolph, Susan M. Edgerton, Ann D. Thor, Steven M. Anderson, Anthony Elias, Xi Kathy Zhou, Neil M. Iyengar, Monica Morrow, Domenick J. Falcone, Omar El-Hely, Andrew J. Dannenberg, Carol A. Sartorius, Paul S. MacLean
Elizabeth A. Wellberg, Peter Kabos, Austin E. Gillen, Britta M. Jacobsen, Heather M. Brechbuhl, Stevi J. Johnson, Michael C. Rudolph, Susan M. Edgerton, Ann D. Thor, Steven M. Anderson, Anthony Elias, Xi Kathy Zhou, Neil M. Iyengar, Monica Morrow, Domenick J. Falcone, Omar El-Hely, Andrew J. Dannenberg, Carol A. Sartorius, Paul S. MacLean
View: Text | PDF
Research Article Endocrinology Oncology

FGFR1 underlies obesity-associated progression of estrogen receptor–positive breast cancer after estrogen deprivation

  • Text
  • PDF
Abstract

Obesity increases breast cancer mortality by promoting resistance to therapy. Here, we identified regulatory pathways in estrogen receptor–positive (ER-positive) tumors that were shared between patients with obesity and those with resistance to neoadjuvant aromatase inhibition. Among these was fibroblast growth factor receptor 1 (FGFR1), a known mediator of endocrine therapy resistance. In a preclinical model with patient-derived ER-positive tumors, diet-induced obesity promoted a similar gene expression signature and sustained the growth of FGFR1-overexpressing tumors after estrogen deprivation. Tumor FGFR1 phosphorylation was elevated with obesity and predicted a shorter disease-free and disease-specific survival for patients treated with tamoxifen. In both human and mouse mammary adipose tissue, FGF1 ligand expression was associated with metabolic dysfunction, weight gain, and adipocyte hypertrophy, implicating the impaired response to a positive energy balance in growth factor production within the tumor niche. In conjunction with these studies, we describe a potentially novel graft-competent model that can be used with patient-derived tissue to elucidate factors specific to extrinsic (host) and intrinsic (tumor) tissue that are critical for obesity-associated tumor promotion. Taken together, we demonstrate that obesity and excess energy establish a tumor environment with features of endocrine therapy resistance and identify a role for ligand-dependent FGFR1 signaling in obesity-associated breast cancer progression.

Authors

Elizabeth A. Wellberg, Peter Kabos, Austin E. Gillen, Britta M. Jacobsen, Heather M. Brechbuhl, Stevi J. Johnson, Michael C. Rudolph, Susan M. Edgerton, Ann D. Thor, Steven M. Anderson, Anthony Elias, Xi Kathy Zhou, Neil M. Iyengar, Monica Morrow, Domenick J. Falcone, Omar El-Hely, Andrew J. Dannenberg, Carol A. Sartorius, Paul S. MacLean

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts