Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement
Douglas B. Johnson, … , Randall S. Davis, Justin M. Balko
Douglas B. Johnson, … , Randall S. Davis, Justin M. Balko
Published December 20, 2018
Citation Information: JCI Insight. 2018;3(24):e120360. https://doi.org/10.1172/jci.insight.120360.
View: Text | PDF
Research Article Oncology Therapeutics

Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement

  • Text
  • PDF
Abstract

Immunotherapies targeting the PD-1 pathway produce durable responses in many cancers, but the tumor-intrinsic factors governing response and resistance are largely unknown. MHC-II expression on tumor cells can predict response to anti–PD-1 therapy. We therefore sought to determine how MHC-II expression by tumor cells promotes PD-1 dependency. Using transcriptional profiling of anti-PD-1–treated patients, we identified unique patterns of immune activation in MHC-II+ tumors. In patients and preclinical models, MHC-II+ tumors recruited CD4+ T cells and developed dependency on PD-1 as well as Lag-3 (an MHC-II inhibitory receptor), which was upregulated in MHC-II+ tumors at acquired resistance to anti–PD-1. Finally, we identify enhanced expression of FCRL6, another MHC-II receptor expressed on NK and T cells, in the microenvironment of MHC-II+ tumors. We ascribe this to what we believe to be a novel inhibitory function of FCRL6 engagement, identifying it as an immunotherapy target. These data suggest a MHC-II–mediated context-dependent mechanism of adaptive resistance to PD-1-targeting immunotherapy.

Authors

Douglas B. Johnson, Mellissa J. Nixon, Yu Wang, Daniel Y. Wang, Emily Castellanos, Monica V. Estrada, Paula I. Ericsson-Gonzalez, Candace H. Cote, Roberto Salgado, Violeta Sanchez, Phillip T. Dean, Susan R. Opalenik, Daniel M. Schreeder, David L. Rimm, Ju Young Kim, Jennifer Bordeaux, Sherene Loi, Leora Horn, Melinda E. Sanders, P. Brent Ferrell Jr., Yaomin Xu, Jeffrey A. Sosman, Randall S. Davis, Justin M. Balko

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts