Adiponectin, an adipocyte-derived circulating protein, accumulates in vasculature, heart, and skeletal muscles through interaction with a unique glycosylphosphatidylinositol-anchored cadherin, T-cadherin. Recent studies have demonstrated that such accumulation is essential for adiponectin-mediated cardiovascular protection. Here, we demonstrate that the adiponectin/T-cadherin system enhances exosome biogenesis and secretion, leading to the decrease of cellular ceramides. Adiponectin accumulated inside multivesicular bodies, the site of exosome generation, in cultured cells and in vivo aorta, and also in exosomes in conditioned media and in blood, together with T-cadherin. The systemic level of exosomes in blood was significantly affected by adiponectin or T-cadherin in vivo. Adiponectin increased exosome biogenesis from the cells, dependently on T-cadherin, but not on AdipoR1 or AdipoR2. Such enhancement of exosome release accompanied the reduction of cellular ceramides through ceramide efflux in exosomes. Consistently, the ceramide reduction by adiponectin was found in aortas of WT mice treated with angiotensin II, but not in T-cadherin–knockout mice. Our findings provide insights into adiponectin/T-cadherin–mediated organ protection through exosome biogenesis and secretion.
Yoshinari Obata, Shunbun Kita, Yoshihisa Koyama, Shiro Fukuda, Hiroaki Takeda, Masatomo Takahashi, Yuya Fujishima, Hirofumi Nagao, Shigeki Masuda, Yoshimitsu Tanaka, Yuto Nakamura, Hitoshi Nishizawa, Tohru Funahashi, Barbara Ranscht, Yoshihiro Izumi, Takeshi Bamba, Eiichiro Fukusaki, Rikinari Hanayama, Shoichi Shimada, Norikazu Maeda, Iichiro Shimomura
Usage data is cumulative from September 2022 through September 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 997 | 488 |
102 | 186 | |
Figure | 301 | 7 |
Supplemental data | 39 | 8 |
Citation downloads | 28 | 0 |
Totals | 1,467 | 689 |
Total Views | 2,156 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.