Abstract

Despite advances in antithrombotic therapy, the risk of recurrent coronary/cerebrovascular ischemia or venous thromboembolism remains high. Dual pathway antithrombotic blockade, using both antiplatelet and anticoagulant therapy, offers the promise of improved thrombotic protection; however, widespread adoption remains tempered by substantial risk of major bleeding. Here, we report a dual pathway therapeutic capable of site-specific targeting to activated platelets and therapeutic enrichment at the site of thrombus growth to allow reduced dosing without compromised antithrombotic efficacy. We engineered a recombinant fusion protein, SCE5-TAP, which consists of a single-chain antibody (SCE5) that targets and blocks the activated GPIIb/IIIa complex, and tick anticoagulant peptide (TAP), a potent direct inhibitor of activated factor X (FXa). SCE5-TAP demonstrated selective platelet targeting and inhibition of thrombosis in murine models of both carotid artery and inferior vena cava thrombosis, without a significant impact on hemostasis. Selective targeting to activated platelets provides an attractive strategy to achieve high antithrombotic efficacy with reduced risk of bleeding complications.

Authors

Donny Hanjaya-Putra, Carolyn Haller, Xiaowei Wang, Erbin Dai, Bock Lim, Liying Liu, Patrick Jaminet, Joy Yao, Amy Searle, Thomas Bonnard, Christoph E. Hagemeyer, Karlheinz Peter, Elliot L. Chaikof

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement