Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring
Sarah Thomas Babu, Xinying Niu, Megan Raetz, Rashmin C. Savani, Lora V. Hooper, Julie Mirpuri
Sarah Thomas Babu, Xinying Niu, Megan Raetz, Rashmin C. Savani, Lora V. Hooper, Julie Mirpuri
View: Text | PDF
Research Article Immunology Inflammation

Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring

  • Text
  • PDF
Abstract

Maternal obesity and a high-fat diet (HFD) during the perinatal period have documented short- and long-term adverse outcomes for offspring. However, the mechanisms of maternal HFD effects on neonatal offspring are unclear. While the effects of maternal HFD exposure during pregnancy on the offspring are increasingly being appreciated, we do not know if maternal HFD alters the microbiota or affects neonatal susceptibility to inflammatory conditions, nor the mechanisms involved. In this study, we show that the offspring of mothers exposed to HFD develop a unique microbiota, marked by expansion of Firmicutes, and an increase in IL-17–producing type 3 innate lymphoid cells (ILC3s). The expansion of ILC3s was recapitulated through neocolonization with HFD microbiota alone. Further, the HFD offspring were susceptible to a neonatal model of inflammation that was reversible with IL-17 blockade. Collectively, these data suggest a previously unknown and unique role for ILC3s in the promotion of an early inflammatory susceptibility in the offspring of mothers exposed to HFD.

Authors

Sarah Thomas Babu, Xinying Niu, Megan Raetz, Rashmin C. Savani, Lora V. Hooper, Julie Mirpuri

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 623 93
PDF 116 22
Figure 274 2
Supplemental data 54 1
Citation downloads 97 0
Totals 1,164 118
Total Views 1,282
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts