Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1
Rebecca Liu, Jonathan Merola, Thomas D. Manes, Lingfeng Qin, Gregory T. Tietjen, Francesc López-Giráldez, Verena Broecker, Caodi Fang, Catherine Xie, Ping-Min Chen, Nancy C. Kirkiles-Smith, Dan Jane-Wit, Jordan S. Pober
Rebecca Liu, Jonathan Merola, Thomas D. Manes, Lingfeng Qin, Gregory T. Tietjen, Francesc López-Giráldez, Verena Broecker, Caodi Fang, Catherine Xie, Ping-Min Chen, Nancy C. Kirkiles-Smith, Dan Jane-Wit, Jordan S. Pober
View: Text | PDF
Research Article Transplantation Vascular biology

Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1

  • Text
  • PDF
Abstract

Early acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown. This study aimed to characterize the effects and mechanisms of interactions between human PCs and allogeneic TEM. We report that unstimulated PCs, like ECs, can directly present alloantigen to TEM, but while IFN-γ–activated ECs (γ-ECs) show increased ability to stimulate alloreactive T cells, IFN-γ–activated PCs (γ-PCs) instead suppress TEM proliferation but not cytokine production or signaling. RNA sequencing analysis of PCs, γ-PCs, ECs, and γ-ECs reveal induction of indoleamine 2,3-dioxygenase 1 (IDO1) in γ-PCs to significantly higher levels than in γ-ECs that correlates with tryptophan depletion in vitro. Consistently, shRNA knockdown of IDO1 markedly reduces γ-PC–mediated immunoregulatory effects. Furthermore, human PCs express IDO1 in a skin allograft rejection humanized mouse model and in human renal allografts with acute T cell–mediated rejection. We conclude that immunosuppressive properties of human PCs are not intrinsic but instead result from IFN-γ–induced IDO1-mediated tryptophan depletion.

Authors

Rebecca Liu, Jonathan Merola, Thomas D. Manes, Lingfeng Qin, Gregory T. Tietjen, Francesc López-Giráldez, Verena Broecker, Caodi Fang, Catherine Xie, Ping-Min Chen, Nancy C. Kirkiles-Smith, Dan Jane-Wit, Jordan S. Pober

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 281 100
PDF 68 26
Figure 269 13
Supplemental data 39 1
Citation downloads 69 0
Totals 726 140
Total Views 866
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts