Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes
Julie A. Lovshin, … , Bruce A. Perkins, David Z.I. Cherney
Julie A. Lovshin, … , Bruce A. Perkins, David Z.I. Cherney
Published January 11, 2018
Citation Information: JCI Insight. 2018;3(1):e96968. https://doi.org/10.1172/jci.insight.96968.
View: Text | PDF
Clinical Research and Public Health Endocrinology Nephrology Article has an altmetric score of 10

Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. In type 1 diabetes (T1D), adjuvant treatment with inhibitors of the renin-angiotensin-aldosterone system (RAAS), which dilate the efferent arteriole, is associated with prevention of progressive albuminuria and renal dysfunction. Uncertainty still exists as to why some individuals with long-standing T1D develop diabetic kidney disease (DKD) while others do not (DKD resistors). We hypothesized that those with DKD would be distinguished from DKD resistors by the presence of RAAS activation. METHODS. Renal and systemic hemodynamic function was measured before and after exogenous RAAS stimulation by intravenous infusion of angiotensin II (ANGII) in 75 patients with prolonged T1D durations and in equal numbers of nondiabetic controls. The primary outcome was change in renal vascular resistance (RVR) in response to RAAS stimulation, a measure of endogenous RAAS activation. RESULTS. Those with DKD had less change in RVR following exogenous RAAS stimulation compared with DKD resistors or controls (19%, 29%, 31%, P = 0.008, DKD vs. DKD resistors), reflecting exaggerated endogenous renal RAAS activation. All T1D participants had similar changes in renal efferent arteroilar resistance (9% vs. 13%, P = 0.37) irrespective of DKD status, which reflected less change versus controls (20%, P = 0.03). In contrast, those with DKD exhibited comparatively less change in afferent arteriolar vascular resistance compared with DKD resistors or controls (33%, 48%, 48%, P = 0.031, DKD vs. DKD resistors), indicating higher endogenous RAAS activity. CONCLUSION. In long-standing T1D, the intrarenal RAAS is exaggerated in DKD, which unexpectedly predominates at the afferent rather than the efferent arteriole, stimulating vasoconstriction. FUNDING. JDRF operating grant 17-2013-312.

Authors

Julie A. Lovshin, Geneviève Boulet, Yuliya Lytvyn, Leif E. Lovblom, Petter Bjornstad, Mohammed A. Farooqi, Vesta Lai, Leslie Cham, Josephine Tse, Andrej Orszag, Daniel Scarr, Alanna Weisman, Hillary A. Keenan, Michael H. Brent, Narinder Paul, Vera Bril, Bruce A. Perkins, David Z.I. Cherney

×

Full Text PDF

Download PDF (752.00 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 15 X users
On 3 Facebook pages
36 readers on Mendeley
See more details