Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death
Emma J. Kenyon, Nerissa K. Kirkwood, Siân R. Kitcher, Molly O’Reilly, Marco Derudas, Daire M. Cantillon, Richard J. Goodyear, Abigail Secker, Sarah Baxendale, James C. Bull, Simon J. Waddell, Tanya T. Whitfield, Simon E. Ward, Corné J. Kros, Guy P. Richardson
Emma J. Kenyon, Nerissa K. Kirkwood, Siân R. Kitcher, Molly O’Reilly, Marco Derudas, Daire M. Cantillon, Richard J. Goodyear, Abigail Secker, Sarah Baxendale, James C. Bull, Simon J. Waddell, Tanya T. Whitfield, Simon E. Ward, Corné J. Kros, Guy P. Richardson
View: Text | PDF
Research Article Neuroscience

Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

  • Text
  • PDF
Abstract

Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

Authors

Emma J. Kenyon, Nerissa K. Kirkwood, Siân R. Kitcher, Molly O’Reilly, Marco Derudas, Daire M. Cantillon, Richard J. Goodyear, Abigail Secker, Sarah Baxendale, James C. Bull, Simon J. Waddell, Tanya T. Whitfield, Simon E. Ward, Corné J. Kros, Guy P. Richardson

×

Figure 3

Effects of compounds (100 μM) on mouse cochlear hair cells in the absence of gentamicin.

Options: View larger image (or click on image) Download as PowerPoint
Effects of compounds (100 μM) on mouse cochlear hair cells in the absenc...
Cultures from P2 pups were treated for 48 hours with either (A) 1% DMSO (n = 2) or (B–N) 100 μM compound as indicated (n = 2 for all compounds). Cultures were labeled with TRITC-phalloidin, and images were acquired from the basal coil. Asterisks identify compounds that damage hair bundles, with arrows indicating examples of damaged bundles. Double asterisks identify compounds that were cytotoxic or caused loss of the sensory epithelium. Scale bar: 50 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts