Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Eosinophils promote inducible NOS–mediated lung allograft acceptance
Oscar Okwudiri Onyema, … , Elizabeth A. Jacobsen, Alexander Sasha Krupnick
Oscar Okwudiri Onyema, … , Elizabeth A. Jacobsen, Alexander Sasha Krupnick
Published December 21, 2017
Citation Information: JCI Insight. 2017;2(24):e96455. https://doi.org/10.1172/jci.insight.96455.
View: Text | PDF
Research Article Immunology Transplantation

Eosinophils promote inducible NOS–mediated lung allograft acceptance

  • Text
  • PDF
Abstract

Lungs allografts have worse long-term survival compared with other organ transplants. This is most likely due to their unique immunoregulation that may not respond to traditional immunosuppression. For example, local NO generation by inducible NOS (iNOS) is critical for lung allograft acceptance but associates with rejection of other solid organs. The source of NO in accepting lung allografts remains unknown. Here, we report that, unlike the case for other pulmonary processes in which myeloid cells control NO generation, recipient-derived eosinophils play a critical and nonredundant role in iNOS-mediated lung allograft acceptance. Depletion of eosinophils reduces NO levels to that of recipients with global deletion of iNOS and leads to a costimulatory blockade–resistant form of rejection. Furthermore, NO production by eosinophils depends on Th1 polarization by inflammatory mediators, such as IFN-γ and TNF-α. Neutralization of such mediators abrogates eosinophil suppressive capacity. Our data point to what we believe to be a unique and previously unrecognized role of eosinophil polarization in mediating allograft tolerance and put into perspective the use of high-dose eosinophil-ablating corticosteroids after lung transplantation.

Authors

Oscar Okwudiri Onyema, Yizhan Guo, Qing Wang, Mark H. Stoler, Christine Lau, Kang Li, Christopher Daniel Nazaroff, Xingan Wang, Wenjun Li, Daniel Kreisel, Andrew E. Gelman, James J. Lee, Elizabeth A. Jacobsen, Alexander Sasha Krupnick

×

Full Text PDF | Download (3.89 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts