Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia
Vincent A. Jourdain, … , Vijay Dhawan, David Eidelberg
Vincent A. Jourdain, … , Vijay Dhawan, David Eidelberg
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96411. https://doi.org/10.1172/jci.insight.96411.
View: Text | PDF
Research Article Neuroscience

Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia

  • Text
  • PDF
Abstract

In a rodent model of Parkinson’s disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis — a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts. We used H215O PET to scan 24 unmedicated PD subjects (12 LID and 12 NLID) and 12 matched healthy subjects in the rest state under normocapnic and hypercapnic conditions. Hypercapnic CBF responses were compared to corresponding levodopa responses from the same subjects. Group differences in hypercapnic vasoreactivity were significant only in the posterior putamen, with greater CBF responses in LID subjects compared with the other subjects. Hypercapnic and levodopa-mediated CBF responses measured in this region exhibited distinct associations with disease severity: the former correlated with off-state motor disability ratings but not symptom duration, whereas the latter correlated with symptom duration but not motor disability. These are the first in vivo human findings linking LID to microvascular changes in the basal ganglia.

Authors

Vincent A. Jourdain, Katharina A. Schindlbeck, Chris C. Tang, Martin Niethammer, Yoon Young Choi, Daniel Markowitz, Amir Nazem, Dominic Nardi, Nicholas Carras, Andrew Feigin, Yilong Ma, Shichun Peng, Vijay Dhawan, David Eidelberg

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts