NK cell–based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15–dosing strategies in NK cell cancer immunotherapeutic settings.
Martin Felices, Alexander J. Lenvik, Ron McElmurry, Sami Chu, Peter Hinderlie, Laura Bendzick, Melissa A. Geller, Jakub Tolar, Bruce R. Blazar, Jeffrey S. Miller
Usage data is cumulative from December 2022 through December 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 2,274 | 1,852 |
319 | 329 | |
Figure | 701 | 10 |
Table | 41 | 0 |
Supplemental data | 37 | 27 |
Citation downloads | 45 | 0 |
Totals | 3,417 | 2,218 |
Total Views | 5,635 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.