Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen
James D. Nolin, Ying Lai, Herbert Luke Ogden, Anne M. Manicone, Ryan C. Murphy, Dowon An, Charles W. Frevert, Farideh Ghomashchi, Gajendra S. Naika, Michael H. Gelb, Gail M. Gauvreau, Adrian M. Piliponsky, William A. Altemeier, Teal S. Hallstrand
James D. Nolin, Ying Lai, Herbert Luke Ogden, Anne M. Manicone, Ryan C. Murphy, Dowon An, Charles W. Frevert, Farideh Ghomashchi, Gajendra S. Naika, Michael H. Gelb, Gail M. Gauvreau, Adrian M. Piliponsky, William A. Altemeier, Teal S. Hallstrand
View: Text | PDF
Research Article Immunology Inflammation

Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen

  • Text
  • PDF
Abstract

Phospholipase A2 (PLA2) enzymes regulate the formation of eicosanoids and lysophospholipids that contribute to allergic airway inflammation. Secreted PLA2 group X (sPLA2-X) was recently found to be increased in the airways of asthmatics and is highly expressed in airway epithelial cells and macrophages. In the current study, we show that allergen exposure increases sPLA2-X in humans and in mice, and that global deletion of Pla2g10 results in a marked reduction in airway hyperresponsiveness (AHR), eosinophil and T cell trafficking to the airways, airway occlusion, generation of type-2 cytokines by antigen-stimulated leukocytes, and antigen-specific immunoglobulins. Further, we found that Pla2g10–/– mice had reduced IL-33 levels in BALF, fewer type-2 innate lymphoid cells (ILC2s) in the lung, less IL-33–induced IL-13 expression in mast cells, and a marked reduction in both the number of newly recruited macrophages and the M2 polarization of these macrophages in the lung. These results indicate that sPLA2-X serves as a central regulator of both innate and adaptive immune response to proteolytic allergen.

Authors

James D. Nolin, Ying Lai, Herbert Luke Ogden, Anne M. Manicone, Ryan C. Murphy, Dowon An, Charles W. Frevert, Farideh Ghomashchi, Gajendra S. Naika, Michael H. Gelb, Gail M. Gauvreau, Adrian M. Piliponsky, William A. Altemeier, Teal S. Hallstrand

×

Figure 9

Macrophage polarization and activation are influenced by Pla2g10 status.

Options: View larger image (or click on image) Download as PowerPoint
Macrophage polarization and activation are influenced by Pla2g10 status....
(A) Concentrations of resident macrophages in lung tissue from WT and Pla2g10–/– mice were similar after saline and HDM challenge. The surface expression of (B) CD206/MR and (C) CD71/TfR on these resident macrophages was assessed to measure the extent of M2 polarization. (D) HDM-induced recruited macrophages in lung tissue were also evaluated by multicolor flow. In this recruited macrophage population, the surface expression of (E) CD206/MR and (F) CD71/TfR was also evaluated to determine M2 polarization. n = 4–5 mice/group. Mean ± SEM, 2-way ANOVA with uncorrected Fisher’s LSD.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts