Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

VISTA.COMP — an engineered checkpoint receptor agonist that potently suppresses T cell–mediated immune responses
Aaron Prodeus, Aws Abdul-Wahid, Amanda Sparkes, Nicholas W. Fischer, Marzena Cydzik, Nicholas Chiang, Mays Alwash, Alessandra Ferzoco, Nathalie Vacaresse, Michael Julius, Reginald M. Gorczysnki, Jean Gariépy
Aaron Prodeus, Aws Abdul-Wahid, Amanda Sparkes, Nicholas W. Fischer, Marzena Cydzik, Nicholas Chiang, Mays Alwash, Alessandra Ferzoco, Nathalie Vacaresse, Michael Julius, Reginald M. Gorczysnki, Jean Gariépy
View: Text | PDF
Research Article Immunology Therapeutics

VISTA.COMP — an engineered checkpoint receptor agonist that potently suppresses T cell–mediated immune responses

  • Text
  • PDF
Abstract

V-domain immunoglobulin suppressor of T cell activation (VISTA) is a recently discovered immune checkpoint ligand that functions to suppress T cell activity. The therapeutic potential of activating this immune checkpoint pathway to reduce inflammatory responses remains untapped, largely due to the inability to derive agonists targeting its unknown receptor. A dimeric construct of the IgV domain of VISTA (VISTA-Fc) was shown to suppress the activation of T cells in vitro. However, this effect required its immobilization on a solid surface, suggesting that VISTA-Fc may display limited efficacy as a VISTA-receptor agonist in vivo. Herein, we have designed a stable pentameric VISTA construct (VISTA.COMP) by genetically fusing its IgV domain to the pentamerization domain from the cartilage oligomeric matrix protein (COMP). In contrast to VISTA-Fc, VISTA.COMP does not require immobilization to inhibit the proliferation of CD4+ T cells undergoing polyclonal activation. Furthermore, we show that VISTA.COMP, but not VISTA-Fc, functions as an immunosuppressive agonist in vivo capable of prolonging the survival of skin allografts in a mouse transplant model as well as rescuing mice from acute concanavalin-A–induced hepatitis. Collectively, we believe our data demonstrate that VISTA.COMP is a checkpoint receptor agonist and the first agent to our knowledge targeting the putative VISTA-receptor to suppress T cell–mediated immune responses.

Authors

Aaron Prodeus, Aws Abdul-Wahid, Amanda Sparkes, Nicholas W. Fischer, Marzena Cydzik, Nicholas Chiang, Mays Alwash, Alessandra Ferzoco, Nathalie Vacaresse, Michael Julius, Reginald M. Gorczysnki, Jean Gariépy

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 541 103
PDF 95 30
Figure 203 3
Supplemental data 46 2
Citation downloads 107 0
Totals 992 138
Total Views 1,130
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts