Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease
Maria E. Moreno-Fernandez, Daniel A. Giles, Traci E. Stankiewicz, Rachel Sheridan, Rebekah Karns, Monica Cappelletti, Kristin Lampe, Rajib Mukherjee, Christian Sina, Anthony Sallese, James P. Bridges, Simon P. Hogan, Bruce J. Aronow, Kasper Hoebe, Senad Divanovic
Maria E. Moreno-Fernandez, Daniel A. Giles, Traci E. Stankiewicz, Rachel Sheridan, Rebekah Karns, Monica Cappelletti, Kristin Lampe, Rajib Mukherjee, Christian Sina, Anthony Sallese, James P. Bridges, Simon P. Hogan, Bruce J. Aronow, Kasper Hoebe, Senad Divanovic
View: Text | PDF
Research Article Inflammation Metabolism

Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression.

Authors

Maria E. Moreno-Fernandez, Daniel A. Giles, Traci E. Stankiewicz, Rachel Sheridan, Rebekah Karns, Monica Cappelletti, Kristin Lampe, Rajib Mukherjee, Christian Sina, Anthony Sallese, James P. Bridges, Simon P. Hogan, Bruce J. Aronow, Kasper Hoebe, Senad Divanovic

×
Options: View larger image (or click on image) Download as PowerPoint
HCC gene expression profile

HCC gene expression profile


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts