Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations
René Hägerling, Dominik Drees, Aaron Scherzinger, Cathrin Dierkes, Silvia Martin-Almedina, Stefan Butz, Kristiana Gordon, Michael Schäfers, Klaus Hinrichs, Pia Ostergaard, Dietmar Vestweber, Tobias Goerge, Sahar Mansour, Xiaoyi Jiang, Peter S. Mortimer, Friedemann Kiefer
René Hägerling, Dominik Drees, Aaron Scherzinger, Cathrin Dierkes, Silvia Martin-Almedina, Stefan Butz, Kristiana Gordon, Michael Schäfers, Klaus Hinrichs, Pia Ostergaard, Dietmar Vestweber, Tobias Goerge, Sahar Mansour, Xiaoyi Jiang, Peter S. Mortimer, Friedemann Kiefer
View: Text | PDF
Clinical Research and Public Health Dermatology Vascular biology

VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations

  • Text
  • PDF
Abstract

BACKGROUND. Lack of investigatory and diagnostic tools has been a major contributing factor to the failure to mechanistically understand lymphedema and other lymphatic disorders in order to develop effective drug and surgical therapies. One difficulty has been understanding the true changes in lymph vessel pathology from standard 2D tissue sections. METHODS. VIPAR (volume information-based histopathological analysis by 3D reconstruction and data extraction), a light-sheet microscopy–based approach for the analysis of tissue biopsies, is based on digital reconstruction and visualization of microscopic image stacks. VIPAR allows semiautomated segmentation of the vasculature and subsequent nonbiased extraction of characteristic vessel shape and connectivity parameters. We applied VIPAR to analyze biopsies from healthy lymphedematous and lymphangiomatous skin. RESULTS. Digital 3D reconstruction provided a directly visually interpretable, comprehensive representation of the lymphatic and blood vessels in the analyzed tissue volumes. The most conspicuous features were disrupted lymphatic vessels in lymphedematous skin and a hyperplasia (4.36-fold lymphatic vessel volume increase) in the lymphangiomatous skin. Both abnormalities were detected by the connectivity analysis based on extracted vessel shape and structure data. The quantitative evaluation of extracted data revealed a significant reduction of lymphatic segment length (51.3% and 54.2%) and straightness (89.2% and 83.7%) for lymphedematous and lymphangiomatous skin, respectively. Blood vessel length was significantly increased in the lymphangiomatous sample (239.3%). CONCLUSION. VIPAR is a volume-based tissue reconstruction data extraction and analysis approach that successfully distinguished healthy from lymphedematous and lymphangiomatous skin. Its application is not limited to the vascular systems or skin. FUNDING. Max Planck Society, DFG (SFB 656), and Cells-in-Motion Cluster of Excellence EXC 1003.

Authors

René Hägerling, Dominik Drees, Aaron Scherzinger, Cathrin Dierkes, Silvia Martin-Almedina, Stefan Butz, Kristiana Gordon, Michael Schäfers, Klaus Hinrichs, Pia Ostergaard, Dietmar Vestweber, Tobias Goerge, Sahar Mansour, Xiaoyi Jiang, Peter S. Mortimer, Friedemann Kiefer

×

Figure 3

Automated segmentation of the lymphatic vasculature in digital 3D volume reconstructions of control and patient skin biopsies.

Options: View larger image (or click on image) Download as PowerPoint
Automated segmentation of the lymphatic vasculature in digital 3D volume...
Skin biopsies whole-mount immunostained for PDPN were subjected to light-sheet–based microscopy (UltraMicroscope II), and the obtained image stacks were visualized using the volume visualization framework Voreen (A–C, also shown in Figure 2, D–F). Lymphatic vessel surfaces were extracted from the volume reconstruction by automatic segmentation of a subvolume using a random walker approach, followed by postprocessing. Spatial 3D renderings of the specimen are shown from a lateral view where the epidermis is located atop the depiction (xz projection, D–F) and following a virtual 90° rotation around the x axis, from the en face view of the skin, i.e., seen through the epidermis (xy projection, G–I). In the control sample, this view largely corresponds to the lymphatic vessels of the papillary plexus. Subsequently vessels were skeletonized (J–L), followed by detection and classification of the branching points of the vessel convolutes (colored dots in M–O). The rotational position of the rendered specimen in space is indicated by the axis indicators in the panels.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts