Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease
Peter McColgan, Kiran K. Seunarine, Sarah Gregory, Adeel Razi, Marina Papoutsi, Jeffrey D. Long, James A. Mills, Eileanoir Johnson, Alexandra Durr, Raymund A.C. Roos, Blair R. Leavitt, Julie C. Stout, Rachael I. Scahill, Chris A. Clark, Geraint Rees, Sarah J. Tabrizi, the Track-On HD Investigators
Peter McColgan, Kiran K. Seunarine, Sarah Gregory, Adeel Razi, Marina Papoutsi, Jeffrey D. Long, James A. Mills, Eileanoir Johnson, Alexandra Durr, Raymund A.C. Roos, Blair R. Leavitt, Julie C. Stout, Rachael I. Scahill, Chris A. Clark, Geraint Rees, Sarah J. Tabrizi, the Track-On HD Investigators
View: Text | PDF
Research Article Neuroscience

Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease

  • Text
  • PDF
Abstract

We lack a mechanistic explanation for the stereotyped pattern of white matter loss seen in Huntington’s disease (HD). While the earliest white matter changes are seen around the striatum, within the corpus callosum, and in the posterior white matter tracts, the order in which these changes occur and why these white matter connections are specifically vulnerable is unclear. Here, we use diffusion tractography in a longitudinal cohort of individuals yet to develop clinical symptoms of HD to identify a hierarchy of vulnerability, where the topological length of white matter connections between a brain area and its neighbors predicts the rate of atrophy over 24 months. This demonstrates a new principle underlying neurodegeneration in HD, whereby brain connections with the greatest topological length are the first to suffer damage that can account for the stereotyped pattern of white matter loss observed in premanifest HD.

Authors

Peter McColgan, Kiran K. Seunarine, Sarah Gregory, Adeel Razi, Marina Papoutsi, Jeffrey D. Long, James A. Mills, Eileanoir Johnson, Alexandra Durr, Raymund A.C. Roos, Blair R. Leavitt, Julie C. Stout, Rachael I. Scahill, Chris A. Clark, Geraint Rees, Sarah J. Tabrizi, the Track-On HD Investigators

×

Figure 4

Schematic showing empirically determined hierarchy of white matter connection vulnerability in premanifest Huntington’s disease.

Options: View larger image (or click on image) Download as PowerPoint
Schematic showing empirically determined hierarchy of white matter conne...
Connections with the largest shortest weighted path length have a higher rate of degeneration and show significant (q < 0.05) longitudinal change. Both cortico-striatal and interhemispheric connections showed significant (q < 0.05) cross-sectional change, while neither intrahemispheric or intramodular connections showed significant (q < 0.05) group differences. Red arrow indicates increasing path length with respect to connection type. Blue wedge indicates rate of degeneration: slow rate represented by thin wedge and fast rate represented by thick wedge. Full black arrow represents q < 0.05; dashed black arrow represents P < 0.05.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts