Over the last several years, one of the major advances in the field of alcoholic liver disease research was the discovery that binge alcohol consumption induced neutrophilia and hepatic neutrophil infiltration in chronically ethanol-fed mice and human subjects with excessive alcohol use (EAU); however, the underlying mechanisms remain obscure. Here, we demonstrated that chronic EAU patients with a history of recent excessive drinking (EAU + RD) had higher serum levels of mitochondrial DNA (mtDNA)-enriched microparticles (MPs) than EAU without recent drinking (EAU – RD) and healthy controls, which correlated positively with circulating neutrophils. Similarly, mice with chronic-plus-binge (E10d + 1B) ethanol feeding also had markedly elevated serum levels of mtDNA-enriched MPs, with activation of hepatic ER stress and inflammatory responses. Inhibition of ER stress by gene KO or inhibitors attenuated ethanol-induced elevation of mtDNA-enriched MPs, neutrophilia, and liver injury. The data from the study of hepatocyte-specific deletion of the protein kinase RNA-like ER kinase (Perk) gene in mice and of cultured hepatocytes demonstrated that hepatocytes were the main source of mtDNA-enriched MPs after ethanol feeding. Finally, administration of mtDNA-enriched MPs isolated from E10d+1B-fed mice caused neutrophilia in mice. In conclusion, E10d + 1B ethanol consumption activates hepatic ER stress–dependent mtDNA-enriched MP release, leading to neutrophilia and liver injury.
Yan Cai, Ming-Jiang Xu, Erik H. Koritzinsky, Zhou Zhou, Wei Wang, Haixia Cao, Peter S.T. Yuen, Ruth A. Ross, Robert A. Star, Suthat Liangpunsakul, Bin Gao
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 372 | 133 |
68 | 47 | |
Figure | 187 | 14 |
Supplemental data | 21 | 3 |
Citation downloads | 30 | 0 |
Totals | 678 | 197 |
Total Views | 875 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.