Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Assessing drug efficacy against Plasmodium falciparum liver stages in vivo
Erika L. Flannery, Lander Foquet, Vorada Chuenchob, Matthew Fishbaugher, Zachary Billman, Mary Jane Navarro, William Betz, Tayla M. Olsen, Joshua Lee, Nelly Camargo, Thao Nguyen, Carola Schafer, Brandon K. Sack, Elizabeth M. Wilson, Jessica Saunders, John Bial, Brice Campo, Susan A. Charman, Sean C. Murphy, Margaret A. Phillips, Stefan H.I. Kappe, Sebastian A. Mikolajczak
Erika L. Flannery, Lander Foquet, Vorada Chuenchob, Matthew Fishbaugher, Zachary Billman, Mary Jane Navarro, William Betz, Tayla M. Olsen, Joshua Lee, Nelly Camargo, Thao Nguyen, Carola Schafer, Brandon K. Sack, Elizabeth M. Wilson, Jessica Saunders, John Bial, Brice Campo, Susan A. Charman, Sean C. Murphy, Margaret A. Phillips, Stefan H.I. Kappe, Sebastian A. Mikolajczak
View: Text | PDF
Resource and Technical Advance Infectious disease Microbiology

Assessing drug efficacy against Plasmodium falciparum liver stages in vivo

  • Text
  • PDF
Abstract

Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P. falciparum liver stage assays or in vivo causal prophylaxis assays using rodent malaria parasites; there is no method to directly test in vivo liver stage activity of candidate antimalarials against the human malaria–causing parasite P. falciparum. Here, we use a liver-chimeric humanized mouse (FRG huHep) to demonstrate in vivo P. falciparum liver stage development and describe the efficacy of clinically used and candidate antimalarials with prophylactic activity. We show that daily administration of atovaquone-proguanil (ATQ-PG; ATQ, 30 mg/kg, and PG, 10 mg/kg) protects 5 of 5 mice from liver stage infection, consistent with the use in humans as a causal prophylactic drug. Single-dose primaquine (60 mg/kg) has similar activity to that observed in humans, demonstrating the activity of this drug (and its active metabolites) in FRG huHep mice. We also show that DSM265, a selective Plasmodial dihydroorotate dehydrogenase inhibitor with causal prophylactic activity in humans, reduces liver stage burden in FRG huHep mice. Finally, we measured liver stage–to–blood stage transition of the parasite, the ultimate readout of prophylactic activity and measurement of infective capacity of parasites in the liver, to show that ATQ-PG reduces blood stage patency to below the limit of quantitation by quantitative PCR (qPCR). The FRG huHep model, thus, provides a platform for preclinical evaluation of drug candidates for liver stage causal prophylactic activity, pharmacokinetic/pharmacodynamics studies, and biological studies to investigate the mechanism of action of liver stage active antimalarials.

Authors

Erika L. Flannery, Lander Foquet, Vorada Chuenchob, Matthew Fishbaugher, Zachary Billman, Mary Jane Navarro, William Betz, Tayla M. Olsen, Joshua Lee, Nelly Camargo, Thao Nguyen, Carola Schafer, Brandon K. Sack, Elizabeth M. Wilson, Jessica Saunders, John Bial, Brice Campo, Susan A. Charman, Sean C. Murphy, Margaret A. Phillips, Stefan H.I. Kappe, Sebastian A. Mikolajczak

×

Figure 2

In vivo liver stage efficacy of DSM265.

Options: View larger image (or click on image) Download as PowerPoint
In vivo liver stage efficacy of DSM265.
(A) Average blood concentration ...
(A) Average blood concentration of DSM265 in 5 FRG huHep mice following oral administration at 20 mg/kg daily for 3 days. (B) FRG huHep mice were infected by the probing of 50 infectious mosquitoes. DSM265 was administered 20 mg/kg free base 2 hours after infection and 24 and 48 hours after infection. Control mice were administered vehicle (5% methylcellulose) at the same time points. Liver burden was quantified on day 6 after infection by in vivo imaging. Dashed line denotes background radiance. (C) IVIS images of luminescence in livers of live FRG huHep mice from B. (D) P. falciparum liver burden measured by 18S rRNA qPCR. Dashed line denotes quantification limit of the assay. Unpaired 2-tailed Student’s t test, ****P < 0.0001. Each symbol represents 1 mouse (B and D).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts