Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch
Alexandra Arreola, … , W. Kimryn Rathmell, John C. Chappell
Alexandra Arreola, … , W. Kimryn Rathmell, John C. Chappell
Published February 22, 2018
Citation Information: JCI Insight. 2018;3(4):e92193. https://doi.org/10.1172/jci.insight.92193.
View: Text | PDF
Research Article Oncology Vascular biology

Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch

  • Text
  • PDF
Abstract

Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype. We show Vhl mutations also disrupt Notch signaling, causing mutation-specific vascular abnormalities, e.g., type 1 (null) vs. type 2B (murine G518A representing human R167Q). In conditional mutation retina vasculature, Vhl-null mutation (i.e., UBCCreER/+Vhlfl/fl) had little effect on initial vessel branching, but it severely reduced arterial and venous branching at later stages. Interestingly, this mutation accelerated arterial maturation, as observed in retina vessel morphology and aberrant α-smooth muscle actin localization, particularly in vascular pericytes. RNA sequencing analysis identified gene expression changes within several key pathways, including Notch and smooth muscle cell contractility. Notch inhibition failed to reverse later-stage branching defects but rescued the accelerated arterialization. Retinal vessels harboring the type 2B Vhl mutation (i.e., UBCCreER/+Vhlfl/2B) displayed stage-specific changes in vessel branching and an advanced progression toward an arterial phenotype. Disrupting Notch signaling in type 2B mutants increased both artery and vein branching and restored arterial maturation toward nonmutant levels. By revealing differential effects of the null and type 2B Vhl mutations on vessel branching and maturation, these data may provide insight into the variability of VHL-associated vascular changes — particularly the heterogeneity and aggressiveness in ccRCC vessel growth — and also suggest Notch pathway targets for treating VHL syndrome.

Authors

Alexandra Arreola, Laura Beth Payne, Morgan H. Julian, Aguirre A. de Cubas, Anthony B. Daniels, Sarah Taylor, Huaning Zhao, Jordan Darden, Victoria L. Bautch, W. Kimryn Rathmell, John C. Chappell

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 370 93
PDF 97 29
Figure 256 0
Supplemental data 35 0
Citation downloads 82 0
Totals 840 122
Total Views 962
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts