Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch
Alexandra Arreola, Laura Beth Payne, Morgan H. Julian, Aguirre A. de Cubas, Anthony B. Daniels, Sarah Taylor, Huaning Zhao, Jordan Darden, Victoria L. Bautch, W. Kimryn Rathmell, John C. Chappell
Alexandra Arreola, Laura Beth Payne, Morgan H. Julian, Aguirre A. de Cubas, Anthony B. Daniels, Sarah Taylor, Huaning Zhao, Jordan Darden, Victoria L. Bautch, W. Kimryn Rathmell, John C. Chappell
View: Text | PDF
Research Article Oncology Vascular biology

Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch

  • Text
  • PDF
Abstract

Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype. We show Vhl mutations also disrupt Notch signaling, causing mutation-specific vascular abnormalities, e.g., type 1 (null) vs. type 2B (murine G518A representing human R167Q). In conditional mutation retina vasculature, Vhl-null mutation (i.e., UBCCreER/+Vhlfl/fl) had little effect on initial vessel branching, but it severely reduced arterial and venous branching at later stages. Interestingly, this mutation accelerated arterial maturation, as observed in retina vessel morphology and aberrant α-smooth muscle actin localization, particularly in vascular pericytes. RNA sequencing analysis identified gene expression changes within several key pathways, including Notch and smooth muscle cell contractility. Notch inhibition failed to reverse later-stage branching defects but rescued the accelerated arterialization. Retinal vessels harboring the type 2B Vhl mutation (i.e., UBCCreER/+Vhlfl/2B) displayed stage-specific changes in vessel branching and an advanced progression toward an arterial phenotype. Disrupting Notch signaling in type 2B mutants increased both artery and vein branching and restored arterial maturation toward nonmutant levels. By revealing differential effects of the null and type 2B Vhl mutations on vessel branching and maturation, these data may provide insight into the variability of VHL-associated vascular changes — particularly the heterogeneity and aggressiveness in ccRCC vessel growth — and also suggest Notch pathway targets for treating VHL syndrome.

Authors

Alexandra Arreola, Laura Beth Payne, Morgan H. Julian, Aguirre A. de Cubas, Anthony B. Daniels, Sarah Taylor, Huaning Zhao, Jordan Darden, Victoria L. Bautch, W. Kimryn Rathmell, John C. Chappell

×

Figure 5

RNA-Seq analysis of P7 conditional Vhl-null and Vhl–2B mutant retinas identifies expression changes in the Notch, hypoxia-inducible factor (HIF), smooth muscle contraction, and FoxO/TGFβ pathways, among others.

Options: View larger image (or click on image) Download as PowerPoint
RNA-Seq analysis of P7 conditional Vhl-null and Vhl–2B mutant retinas id...
(A) Heatmap of the 200 most differentially regulated genes for each of the 4 groups: UBC+/+Vhlfl/fl (green), UBC+/+Vhlfl/2B (red), UBCCreER/+Vhlfl/fl (blue), and UBCCreER/+Vhlfl/2B (orange). Color key indicates relative levels of gene expression changes, with darker blue indicating downregulation and darker red indicating upregulation. (B–E) Box plots for representative genes within each pathway with substantial changes: (B) Hey2 (Notch), (C) Egln3 (HIF), (D) Arhgef12 (smooth muscle contraction), and (E) Gadd45b (FoxO/TGFβ).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts