Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Intestinal barrier regulates immune responses in the liver via IL-10–producing macrophages
Nobuhito Taniki, … , Hirotoshi Ebinuma, Takanori Kanai
Nobuhito Taniki, … , Hirotoshi Ebinuma, Takanori Kanai
Published June 21, 2018
Citation Information: JCI Insight. 2018;3(12):e91980. https://doi.org/10.1172/jci.insight.91980.
View: Text | PDF
Research Article Hepatology Immunology

Intestinal barrier regulates immune responses in the liver via IL-10–producing macrophages

  • Text
  • PDF
Abstract

The gut-liver axis is of clinical importance as a potential therapeutic target in a wide range of liver diseases; however, the mechanisms underlying interactions between microbial products and immune responses in the liver remain unknown. In this study, we demonstrated that IL-10–producing macrophages contribute to immune tolerance in the inflamed liver under intestinal barrier disruption in a murine tandem model of dextran sulfate sodium (DSS) colitis and concanavalin A (Con A) hepatitis. Intestinal barrier disruption protected mice from subsequent liver injury, and the severity of colitis directly affected susceptibility to such injury. The protective effect of DSS–Con A was canceled in gut-sterilized mice, suggesting that gut microbiota play a substantial role in this process. Altered gut microbiota and their metabolites, along with a disrupted intestinal barrier, directly gave rise to immunological permissiveness in the inflamed liver. We identified 1-methylnicotinamide (1-MNA) as a candidate metabolite capable of suppressing liver injury with the potential to induce IL-10–producing macrophages. Consistently, expression of nicotinamide N-methyltransferase, which converts nicotinamide to 1-MNA, was upregulated in the liver of DSS–Con A mice, and this effect was abrogated by gut sterilization. Collectively, our results provide a mechanistic insight into the regulation of immunological balance in the liver via the gut-liver axis.

Authors

Nobuhito Taniki, Nobuhiro Nakamoto, Po-Sung Chu, Yohei Mikami, Takeru Amiya, Toshiaki Teratani, Takahiro Suzuki, Tomoya Tsukimi, Shinji Fukuda, Akihiro Yamaguchi, Shunsuke Shiba, Rei Miyake, Tadashi Katayama, Hirotoshi Ebinuma, Takanori Kanai

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 766 179
PDF 166 54
Figure 302 1
Supplemental data 36 4
Citation downloads 19 0
Totals 1,289 238
Total Views 1,527

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts