Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Retinol-binding protein 7 is an endothelium-specific PPARγ cofactor mediating an antioxidant response through adiponectin
Chunyan Hu, … , Frederick W. Quelle, Curt D. Sigmund
Chunyan Hu, … , Frederick W. Quelle, Curt D. Sigmund
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e91738. https://doi.org/10.1172/jci.insight.91738.
View: Text | PDF
Research Article Vascular biology

Retinol-binding protein 7 is an endothelium-specific PPARγ cofactor mediating an antioxidant response through adiponectin

  • Text
  • PDF
Abstract

Impaired PPARγ activity in endothelial cells causes oxidative stress and endothelial dysfunction which causes a predisposition to hypertension, but the identity of key PPARγ target genes that protect the endothelium remain unclear. Retinol-binding protein 7 (RBP7) is a PPARγ target gene that is essentially endothelium specific. Whereas RBP7-deficient mice exhibit normal endothelial function at baseline, they exhibit severe endothelial dysfunction in response to cardiovascular stressors, including high-fat diet and subpressor angiotensin II. Endothelial dysfunction was not due to differences in weight gain, impaired glucose homeostasis, or hepatosteatosis, but occurred through an oxidative stress–dependent mechanism which can be rescued by scavengers of superoxide. RNA sequencing revealed that RBP7 was required to mediate induction of a subset of PPARγ target genes by rosiglitazone in the endothelium including adiponectin. Adiponectin was selectively induced in the endothelium of control mice by high-fat diet and rosiglitazone, whereas RBP7 deficiency abolished this induction. Adiponectin inhibition caused endothelial dysfunction in control vessels, whereas adiponectin treatment of RBP7-deficient vessels improved endothelium-dependent relaxation and reduced oxidative stress. We conclude that RBP7 is required to mediate the protective effects of PPARγ in the endothelium through adiponectin, and RBP7 is an endothelium-specific PPARγ target and regulator of PPARγ activity.

Authors

Chunyan Hu, Henry L. Keen, Ko-Ting Lu, Xuebo Liu, Jing Wu, Deborah R. Davis, Stella-Rita C. Ibeawuchi, Silke Vogel, Frederick W. Quelle, Curt D. Sigmund

×

Figure 3

Metabolic parameters.

Options: View larger image (or click on image) Download as PowerPoint
Metabolic parameters.
(A) Changes in body weight from 0 to 8 weeks in ND...
(A) Changes in body weight from 0 to 8 weeks in ND–fed and HFD–fed control and RBP7-deficient mice were recorded. *P < 0.05 HFD vs. ND by genotype by 2-way repeated measures (RM) ANOVA; n = 11–18 per group. (B–E) Body weight (B, n = 6–10 per group), fasting glucose (C, n = 7–11 per group), glucose tolerance test (D, n = 6–7 per group), insulin tolerance test (E, n = 6–7 per group) at 20 weeks in ND-fed and HFD-fed control and RBP7-deficient mice. *P < 0.05 HFD vs. ND by genotype by 2-way ANOVA in B and C and by 2-way RM ANOVA in D and E. (F) Oil red O staining of liver sections at 20 weeks in ND-fed and HFD-fed control and RBP7-deficient mice. Scale bars: 200 μm. (G) Plasma RBP4 measured at 20 weeks in ND-fed and HFD-fed control and RBP7-deficient mice. n = 7–9 per group by 2-way ANOVA. All data are the mean ± SEM. Con, control; HFD, high-fat diet; ND, normal diet; RBP7, retinol-binding protein 7.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts