Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients
Norimitsu Ban, … , Jun Yoshino, Rajendra S. Apte
Norimitsu Ban, … , Jun Yoshino, Rajendra S. Apte
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e91455. https://doi.org/10.1172/jci.insight.91455.
View: Text | PDF
Research Article Ophthalmology

GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients

  • Text
  • PDF
Abstract

Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice.

Authors

Norimitsu Ban, Carla J. Siegfried, Jonathan B. Lin, Ying-Bo Shui, Julia Sein, Wolfgang Pita-Thomas, Abdoulaye Sene, Andrea Santeford, Mae Gordon, Rachel Lamb, Zhenyu Dong, Shannon C. Kelly, Valeria Cavalli, Jun Yoshino, Rajendra S. Apte

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts