Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Notch1 haploinsufficiency causes ascending aortic aneurysms in mice
Sara N. Koenig, Stephanie LaHaye, James D. Feller, Patrick Rowland, Kan N. Hor, Aaron J. Trask, Paul M.L. Janssen, Freddy Radtke, Brenda Lilly, Vidu Garg
Sara N. Koenig, Stephanie LaHaye, James D. Feller, Patrick Rowland, Kan N. Hor, Aaron J. Trask, Paul M.L. Janssen, Freddy Radtke, Brenda Lilly, Vidu Garg
View: Text | PDF
Research Article Cardiology

Notch1 haploinsufficiency causes ascending aortic aneurysms in mice

  • Text
  • PDF
Abstract

An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/– mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/– aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage–specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.

Authors

Sara N. Koenig, Stephanie LaHaye, James D. Feller, Patrick Rowland, Kan N. Hor, Aaron J. Trask, Paul M.L. Janssen, Freddy Radtke, Brenda Lilly, Vidu Garg

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 642 111
PDF 173 42
Figure 445 4
Supplemental data 207 4
Citation downloads 111 0
Totals 1,578 161
Total Views 1,739
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts