Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer
Niyati Desai, … , Vikram Deshpande, David T. Ting
Niyati Desai, … , Vikram Deshpande, David T. Ting
Published February 9, 2017
Citation Information: JCI Insight. 2017;2(3):e91078. https://doi.org/10.1172/jci.insight.91078.
View: Text | PDF
Research Article Oncology

Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer

  • Text
  • PDF
Abstract

There is tremendous excitement for the potential of epigenetic therapies in cancer, but the ability to predict and monitor response to these drugs remains elusive. This is in part due to the inability to differentiate the direct cytotoxic and the immunomodulatory effects of these drugs. The DNA-hypomethylating agent 5-azacitidine (AZA) has shown these distinct effects in colon cancer and appears to be linked to the derepression of repeat RNAs. LINE and HERV are two of the largest classes of repeats in the genome, and despite many commonalities, we found that there is heterogeneity in behavior among repeat subtypes. Specifically, the LINE-1 and HERV-H subtypes detected by RNA sequencing and RNA in situ hybridization in colon cancers had distinct expression patterns, which suggested that these repeats are correlated to transcriptional programs marking different biological states. We found that low LINE-1 expression correlates with global DNA hypermethylation, wild-type TP53 status, and responsiveness to AZA. HERV-H repeats were not concordant with LINE-1 expression but were found to be linked with differences in FOXP3+ Treg tumor infiltrates. Together, distinct repeat RNA expression patterns define new molecular classifications of colon cancer and provide biomarkers that better distinguish cytotoxic from immunomodulatory effects by epigenetic drugs.

Authors

Niyati Desai, Dipti Sajed, Kshitij S. Arora, Alexander Solovyov, Mihir Rajurkar, Jacob R. Bledsoe, Srinjoy Sil, Ramzi Amri, Eric Tai, Olivia C. MacKenzie, Mari Mino-Kenudson, Martin J. Aryee, Cristina R. Ferrone, David L. Berger, Miguel N. Rivera, Benjamin D. Greenbaum, Vikram Deshpande, David T. Ting

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 494 604
PDF 57 30
Figure 101 1
Table 17 0
Supplemental data 47 6
Citation downloads 33 0
Totals 749 641
Total Views 1,390
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts