Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer
Niyati Desai, Dipti Sajed, Kshitij S. Arora, Alexander Solovyov, Mihir Rajurkar, Jacob R. Bledsoe, Srinjoy Sil, Ramzi Amri, Eric Tai, Olivia C. MacKenzie, Mari Mino-Kenudson, Martin J. Aryee, Cristina R. Ferrone, David L. Berger, Miguel N. Rivera, Benjamin D. Greenbaum, Vikram Deshpande, David T. Ting
Niyati Desai, Dipti Sajed, Kshitij S. Arora, Alexander Solovyov, Mihir Rajurkar, Jacob R. Bledsoe, Srinjoy Sil, Ramzi Amri, Eric Tai, Olivia C. MacKenzie, Mari Mino-Kenudson, Martin J. Aryee, Cristina R. Ferrone, David L. Berger, Miguel N. Rivera, Benjamin D. Greenbaum, Vikram Deshpande, David T. Ting
View: Text | PDF
Research Article Oncology

Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer

  • Text
  • PDF
Abstract

There is tremendous excitement for the potential of epigenetic therapies in cancer, but the ability to predict and monitor response to these drugs remains elusive. This is in part due to the inability to differentiate the direct cytotoxic and the immunomodulatory effects of these drugs. The DNA-hypomethylating agent 5-azacitidine (AZA) has shown these distinct effects in colon cancer and appears to be linked to the derepression of repeat RNAs. LINE and HERV are two of the largest classes of repeats in the genome, and despite many commonalities, we found that there is heterogeneity in behavior among repeat subtypes. Specifically, the LINE-1 and HERV-H subtypes detected by RNA sequencing and RNA in situ hybridization in colon cancers had distinct expression patterns, which suggested that these repeats are correlated to transcriptional programs marking different biological states. We found that low LINE-1 expression correlates with global DNA hypermethylation, wild-type TP53 status, and responsiveness to AZA. HERV-H repeats were not concordant with LINE-1 expression but were found to be linked with differences in FOXP3+ Treg tumor infiltrates. Together, distinct repeat RNA expression patterns define new molecular classifications of colon cancer and provide biomarkers that better distinguish cytotoxic from immunomodulatory effects by epigenetic drugs.

Authors

Niyati Desai, Dipti Sajed, Kshitij S. Arora, Alexander Solovyov, Mihir Rajurkar, Jacob R. Bledsoe, Srinjoy Sil, Ramzi Amri, Eric Tai, Olivia C. MacKenzie, Mari Mino-Kenudson, Martin J. Aryee, Cristina R. Ferrone, David L. Berger, Miguel N. Rivera, Benjamin D. Greenbaum, Vikram Deshpande, David T. Ting

×

Full Text PDF

Download PDF (965.46 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts