A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver’s natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450–mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.
Soon Seng Ng, Anming Xiong, Khanh Nguyen, Marilyn Masek, Da Yoon No, Menashe Elazar, Eyal Shteyer, Mark A. Winters, Amy Voedisch, Kate Shaw, Sheikh Tamir Rashid, Curtis W. Frank, Nam Joon Cho, Jeffrey S. Glenn
Usage data is cumulative from September 2022 through September 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 563 | 291 |
66 | 41 | |
Figure | 87 | 2 |
Supplemental data | 12 | 5 |
Citation downloads | 20 | 0 |
Totals | 748 | 339 |
Total Views | 1,087 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.