Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

p63+ ureteric bud tip cells are progenitors of intercalated cells
Samir S. El-Dahr, … , Satrajit Sinha, Zubaida Saifudeen
Samir S. El-Dahr, … , Satrajit Sinha, Zubaida Saifudeen
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e89996. https://doi.org/10.1172/jci.insight.89996.
View: Text | PDF
Research Article Development Nephrology

p63+ ureteric bud tip cells are progenitors of intercalated cells

  • Text
  • PDF
Abstract

During renal branching morphogenesis, ureteric bud tip cells (UBTC) serve as the progenitor epithelium for all cell types of the collecting duct. While the transcriptional circuitry of ureteric bud (UB) branching has been intensively studied, the transcriptional control of UBTC differentiation has been difficult to ascertain. This is partly due to limited knowledge of UBTC-specific transcription factors that mark the progenitor state. Here, we identify the transcription factor p63 (also known as TP63), a master regulator of basal stem cells in stratified epithelia, as a specific marker of mouse and human UBTC. Nuclear p63 marks Ret+ UBTC transiently and is silenced by the end of nephrogenesis. Lineage tracing revealed that a subset of UBTC expressing the ΔNp63 isoform (N-terminus truncated p63) is dedicated to generating cortical intercalated cells. Germline targeting of ΔNp63 in mice caused a marked reduction in intercalated cells near the time of birth, indicating that p63 not only marks UBTC, but also is essential for their differentiation. We conclude that the choice of UBTC progenitors to differentiate is determined earlier than previously recognized and that UBTC progenitors are prepatterned and fate restricted. These findings prompt the rethinking of current paradigms of collecting duct differentiation and may have implications for regenerative renal medicine.

Authors

Samir S. El-Dahr, Yuwen Li, Jiao Liu, Elleny Gutierrez, Kathleen S. Hering-Smith, Sabina Signoretti, Jean-Christophe Pignon, Satrajit Sinha, Zubaida Saifudeen

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 356 51
PDF 97 5
Figure 413 0
Citation downloads 112 0
Totals 978 56
Total Views 1,034
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts