Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
p63+ ureteric bud tip cells are progenitors of intercalated cells
Samir S. El-Dahr, Yuwen Li, Jiao Liu, Elleny Gutierrez, Kathleen S. Hering-Smith, Sabina Signoretti, Jean-Christophe Pignon, Satrajit Sinha, Zubaida Saifudeen
Samir S. El-Dahr, Yuwen Li, Jiao Liu, Elleny Gutierrez, Kathleen S. Hering-Smith, Sabina Signoretti, Jean-Christophe Pignon, Satrajit Sinha, Zubaida Saifudeen
View: Text | PDF
Research Article Development Nephrology

p63+ ureteric bud tip cells are progenitors of intercalated cells

  • Text
  • PDF
Abstract

During renal branching morphogenesis, ureteric bud tip cells (UBTC) serve as the progenitor epithelium for all cell types of the collecting duct. While the transcriptional circuitry of ureteric bud (UB) branching has been intensively studied, the transcriptional control of UBTC differentiation has been difficult to ascertain. This is partly due to limited knowledge of UBTC-specific transcription factors that mark the progenitor state. Here, we identify the transcription factor p63 (also known as TP63), a master regulator of basal stem cells in stratified epithelia, as a specific marker of mouse and human UBTC. Nuclear p63 marks Ret+ UBTC transiently and is silenced by the end of nephrogenesis. Lineage tracing revealed that a subset of UBTC expressing the ΔNp63 isoform (N-terminus truncated p63) is dedicated to generating cortical intercalated cells. Germline targeting of ΔNp63 in mice caused a marked reduction in intercalated cells near the time of birth, indicating that p63 not only marks UBTC, but also is essential for their differentiation. We conclude that the choice of UBTC progenitors to differentiate is determined earlier than previously recognized and that UBTC progenitors are prepatterned and fate restricted. These findings prompt the rethinking of current paradigms of collecting duct differentiation and may have implications for regenerative renal medicine.

Authors

Samir S. El-Dahr, Yuwen Li, Jiao Liu, Elleny Gutierrez, Kathleen S. Hering-Smith, Sabina Signoretti, Jean-Christophe Pignon, Satrajit Sinha, Zubaida Saifudeen

×

Figure 9

Homozygous deletion of ΔNp63 compromises IC differentiation.

Options: View larger image (or click on image) Download as PowerPoint
Homozygous deletion of ΔNp63 compromises IC differentiation.
(A and B) H...
(A and B) H&E staining showing intact overall structure of the nephrogenic zone in knockin ΔNp63gfp/gfp mice. (C and D) Double immunostaining with p63 (red) and Pax2 (purple) showing that loss of ΔNp63 diminishes expression of total p63 in UB tips. The insets show that NCAM (green) marks the induced cap mesenchyme and GFP labels ΔNp63 gene-targeted ureteric bud tip cells (UBTC). Loss of ΔNp63 has no effect on integrity of UBTC. (E and F) Double immunostaining of AQP2 (red) and carbonic anhydrase II (CAII, green) showing that targeted deletion of ΔNp63 results in loss of IC marker expression (n = 3 litters). Original magnification, ×20; ×40 (all insets).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts