Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy
Megan S. Inkeles, … , Matteo Pellegrini, Robert L. Modlin
Megan S. Inkeles, … , Matteo Pellegrini, Robert L. Modlin
Published September 22, 2016
Citation Information: JCI Insight. 2016;1(15):e88843. https://doi.org/10.1172/jci.insight.88843.
View: Text | PDF
Research Article Immunology Infectious disease

Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy

  • Text
  • PDF
Abstract

Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.

Authors

Megan S. Inkeles, Rosane M.B. Teles, Delila Pouldar, Priscila R. Andrade, Cressida A. Madigan, David Lopez, Mike Ambrose, Mahdad Noursadeghi, Euzenir N. Sarno, Thomas H. Rea, Maria T. Ochoa, M. Luisa Iruela-Arispe, William R. Swindell, Tom H.M. Ottenhoff, Annemieke Geluk, Barry R. Bloom, Matteo Pellegrini, Robert L. Modlin

×

Figure 4

Integration of WGCNA gene modules with cell-type–specific gene signatures.

Options: View larger image (or click on image) Download as PowerPoint
Integration of WGCNA gene modules with cell-type–specific gene signature...
For each of the 17 modules of related genes derived from WGCNA analysis, enrichment for cell-type–specific gene signatures for 18 cell types with immune or structural functions were calculated and displayed in a heatmap of Z scores. Z scores were calculated from log2 fold change enrichment scores, using average gene expression for each leprosy subtype for each cell type. Cell-type names are provided in rows, and WGCNA module names from Figure 2 are provided in the column. Modules that were significantly associated with one leprosy subtype are labeled. ENL, erythema nodosum leprosum; L-lep, lepromatous leprosy; RR, reversal reaction; T-lep, tuberculoid leprosy.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts