Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates
Christopher D. Petro, Brian Weinrick, Nazanin Khajoueinejad, Clare Burn, Rani Sellers, William R. Jacobs Jr, Betsy C. Herold
Christopher D. Petro, Brian Weinrick, Nazanin Khajoueinejad, Clare Burn, Rani Sellers, William R. Jacobs Jr, Betsy C. Herold
View: Text | PDF
Research Article Vaccines Virology

HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates

  • Text
  • PDF
Abstract

A single-cycle herpes simplex virus (HSV) deleted in glycoprotein D (ΔgD-2) elicited high titer HSV-specific antibodies (Abs) that (i) were rapidly transported into the vaginal mucosa; (ii) elicited antibody-dependent cell-mediated cytotoxicity but little neutralization; (iii) provided complete protection against lethal intravaginal challenge; and (iv) prevented establishment of latency in mice. However, clinical isolates may differ antigenically and impact vaccine efficacy. To determine the breadth and further define mechanisms of protection of this vaccine candidate, we tested ΔgD-2 against a panel of clinical isolates in a murine skin challenge model. The isolates were genetically diverse, as evidenced by genomic sequencing and in vivo virulence. Prime and boost immunization (s.c.) with live but not heat- or UV-inactivated ΔgD-2 completely protected mice from challenge with the most virulent HSV-1 and HSV-2 isolates. Furthermore, mice were completely protected against 100 times the lethal dose that typically kills 90% of animals (LD90) of a South African isolate (SD90), and no latent virus was detected in dorsal root ganglia. Immunization was associated with rapid recruitment of HSV-specific FcγRIII- and FcγRIV-activating IgG2 Abs into the skin, resolution of local cytokine and cellular inflammatory responses, and viral clearance by day 5 after challenge. Rapid clearance and the absence of latent virus suggest that ΔgD-2 elicits sterilizing immunity.

Authors

Christopher D. Petro, Brian Weinrick, Nazanin Khajoueinejad, Clare Burn, Rani Sellers, William R. Jacobs Jr, Betsy C. Herold

×

Figure 3

HSV-2 ΔgD-2 protects mice from clinical isolates of HSV-1 and HSV-2.

Options: View larger image (or click on image) Download as PowerPoint
HSV-2 ΔgD-2 protects mice from clinical isolates of HSV-1 and HSV-2.
C57...
C57BL/6 (n = 7 mice/group) or BALB/C (n = 5 mice/group) mice were immunized with ΔgD-2 or VD60 cell lysates (control) and subsequently challenged by skin scarification with an LD90 dose of the most virulent isolates and monitored daily. (A) Representative images from C57BL/6 mice on days 4, 5, and 6 after challenge (magnification 1.2×); (B) survival curves for C57BL/6 mice, and (C) survival curves for BALB/C mice. (D) Additional C57BL/6 mice were challenged with 10 and 100 times (10x and 100x) the LD90 dose of SD90 and 10 times the LD90 of B3 × 1.1. ΔgD-2 and control-vaccinated groups were compared for survival by Kaplan-Meier; ***P < 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts