Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast,
Shunji Nakatake, Yusuke Murakami, Yasuhiro Ikeda, Noriko Morioka, Takashi Tachibana, Kohta Fujiwara, Noriko Yoshida, Shoji Notomi, Toshio Hisatomi, Shigeo Yoshida, Tatsuro Ishibashi, Yusaku Nakabeppu, Koh-Hei Sonoda
Oxidative DNA damage targeted microglia in early phase of retinal degeneration in rd10 mice.