Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Anti-coreceptor therapy drives selective T cell egress by suppressing inflammation-dependent chemotactic cues
Aaron J. Martin, Matthew Clark, Gregory Gojanovich, Fatima Manzoor, Keith Miller, Douglas E. Kline, Y. Maurice Morillon, Bo Wang, Roland Tisch
Aaron J. Martin, Matthew Clark, Gregory Gojanovich, Fatima Manzoor, Keith Miller, Douglas E. Kline, Y. Maurice Morillon, Bo Wang, Roland Tisch
View: Text | PDF
Research Article Therapeutics

Anti-coreceptor therapy drives selective T cell egress by suppressing inflammation-dependent chemotactic cues

  • Text
  • PDF
Abstract

There continues to be a need for immunotherapies to treat type 1 diabetes in the clinic. We previously reported that nondepleting anti-CD4 and -CD8 Ab treatment effectively reverses diabetes in new-onset NOD mice. A key feature of the induction of remission is the egress of the majority of islet-resident T cells. How this occurs is undefined. Herein, the effects of coreceptor therapy on islet T cell retention were investigated. Bivalent Ab binding to CD4 and CD8 blocked TCR signaling and T cell cytokine production, while indirectly downregulating islet chemokine expression. These processes were required for T cell retention, as ectopic IFN-γ or CXCL10 inhibited Ab-mediated T cell purging. Importantly, treatment of humanized mice with nondepleting anti–human CD4 and CD8 Ab similarly reduced tissue-infiltrating human CD4+ and CD8+ T cells. These findings demonstrate that Ab binding of CD4 and CD8 interrupts a feed-forward circuit by suppressing T cell–produced cytokines needed for expression of chemotactic cues, leading to rapid T cell egress from the islets. Coreceptor therapy therefore offers a robust approach to suppress T cell–mediated pathology by purging T cells in an inflammation-dependent manner.

Authors

Aaron J. Martin, Matthew Clark, Gregory Gojanovich, Fatima Manzoor, Keith Miller, Douglas E. Kline, Y. Maurice Morillon, Bo Wang, Roland Tisch

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts