Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation
Takehiro Hiraoka, … , Tomoyuki Fujii, Yutaka Osuga
Takehiro Hiraoka, … , Tomoyuki Fujii, Yutaka Osuga
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e87591. https://doi.org/10.1172/jci.insight.87591.
View: Text | PDF
Research Article Endocrinology Reproductive biology

STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation

  • Text
  • PDF
Abstract

Although a close connection between uterine regeneration and successful pregnancy in both humans and mice has been consistently observed, its molecular basis remains unclear. We here established a mouse model of decellularized uterine matrix (DUM) transplantation. Resected mouse uteri were processed with SDS to make DUMs without any intact cells. DUMs were transplanted into the mouse uteri with artificially induced defects, and all the uterine layers were recovered at the DUM transplantation sites within a month. In the regenerated uteri, normal hormone responsiveness in early pregnancy was observed, suggesting the regeneration of functional uteri. Uterine epithelial cells rapidly migrated and formed a normal uterine epithelial layer within a week, indicating a robust epithelial-regenerating capacity. Stromal and myometrial regeneration occurred following epithelial regeneration. In ovariectomized mice, uterine regeneration of the DUM transplantation was similarly observed, suggesting that ovarian hormones are not essential for this regeneration process. Importantly, the regenerating epithelium around the DUM demonstrated heightened STAT3 phosphorylation and cell proliferation, which was suppressed in uteri of Stat3 conditional knockout mice. These data suggest a key role of STAT3 in the initial step of the uterine regeneration process. The DUM transplantation model is a powerful tool for uterine regeneration research.

Authors

Takehiro Hiraoka, Yasushi Hirota, Tomoko Saito-Fujita, Mitsunori Matsuo, Mahiro Egashira, Leona Matsumoto, Hirofumi Haraguchi, Sudhansu K. Dey, Katsuko S. Furukawa, Tomoyuki Fujii, Yutaka Osuga

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 845 164
PDF 134 41
Figure 336 2
Supplemental data 38 3
Citation downloads 36 0
Totals 1,389 210
Total Views 1,599
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts