Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling
Wenjun Li, … , Kory J. Lavine, Daniel Kreisel
Wenjun Li, … , Kory J. Lavine, Daniel Kreisel
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e87315. https://doi.org/10.1172/jci.insight.87315.
View: Text | PDF
Research Article Inflammation Transplantation

Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling

  • Text
  • PDF
Abstract

It is well established that maladaptive innate immune responses to sterile tissue injury represent a fundamental mechanism of disease pathogenesis. In the context of cardiac ischemia reperfusion injury, neutrophils enter inflamed heart tissue, where they play an important role in potentiating tissue damage and contributing to contractile dysfunction. The precise mechanisms that govern how neutrophils are recruited to and enter the injured heart are incompletely understood. Using a model of cardiac transplant–mediated ischemia reperfusion injury and intravital 2-photon imaging of beating mouse hearts, we determined that tissue-resident CCR2+ monocyte–derived macrophages are essential mediators of neutrophil recruitment into ischemic myocardial tissue. Our studies revealed that neutrophil extravasation is mediated by a TLR9/MyD88/CXCL5 pathway. Intravital 2-photon imaging demonstrated that CXCL2 and CXCL5 play critical and nonredundant roles in guiding neutrophil adhesion and crawling, respectively. Together, these findings uncover a specific role for a tissue-resident monocyte-derived macrophage subset in sterile tissue inflammation and support the evolving concept that macrophage ontogeny is an important determinant of function. Furthermore, our results provide the framework for targeting of cell-specific signaling pathways in myocardial ischemia reperfusion injury.

Authors

Wenjun Li, Hsi-Min Hsiao, Ryuji Higashikubo, Brian T. Saunders, Ankit Bharat, Daniel R. Goldstein, Alexander S. Krupnick, Andrew E. Gelman, Kory J. Lavine, Daniel Kreisel

×

Figure 6

Expression levels of neutrophil chemoattractants are decreased in donor macrophage populations in TLR9-deficient heart grafts.

Options: View larger image (or click on image) Download as PowerPoint
Expression levels of neutrophil chemoattractants are decreased in donor ...
Expression levels of CXCL2 and CXCL5 in sorted donor-derived (CD45.2+CD45.1–CD11b+CD64+) CCR2+ and CCR2– macrophages examined 2 hours after transplantation of B6 CD45.2+ WT or B6 CD45.2+ MyD88–deficient hearts into congenic B6 CD45.1+ recipients. Results were normalized to 18s RNA and compared with the CCR2– macrophage population in each experimental group. *P < 0.05; **P < 0.01 (2-way ANOVA). Filled circles, WT CCR2- macrophages; filled squares, WT CCR2+ macrophages and monocyte-derived macrophages; filled triangles, TLR9-deficient CCR2– macrophages; open circles, TLR9-deficient CCR2+ macrophages and monocyte-derived macrophages. Graph represents at least 4 separate experiments per group where cells from 2 hearts were pooled for each experiment. Horizontal bars denote means, and error bars denote ±SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts