Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues
Ildiko Kasza, … , Caroline M. Alexander, Scott B. Reeder
Ildiko Kasza, … , Caroline M. Alexander, Scott B. Reeder
Published August 18, 2016
Citation Information: JCI Insight. 2016;1(13):e87146. https://doi.org/10.1172/jci.insight.87146.
View: Text | PDF
Research Article Metabolism

Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues

  • Text
  • PDF
Abstract

Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13–1.10 cm; on average, this depot is calculated to weigh 8.8 kg.

Authors

Ildiko Kasza, Diego Hernando, Alejandro Roldán-Alzate, Caroline M. Alexander, Scott B. Reeder

×

Full Text PDF | Download (3.02 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts