A role for oxidative stress in the brain has been suggested in the pathogenesis of diet-induced obesity (DIO), although the underlying neural regions and mechanisms remain incompletely defined. We tested the hypothesis that NADPH oxidase–dependent oxidative stress in the paraventricular nucleus (PVN), a hypothalamic energy homeostasis center, contributes to the development of DIO. Cre/LoxP technology was coupled with selective PVN adenoviral microinjection to ablate p22phox, the obligatory subunit for NADPH oxidase activity, in mice harboring a conditional p22phox allele. Selective deletion of p22phox in the PVN protected mice from high-fat DIO independent of changes in food intake or locomotor activity. This was accompanied by β3-adrenoceptor–dependent increases in energy expenditure, elevations in brown adipose tissue thermogenesis, and browning of white adipose tissue. These data reveal a potentially novel role for brain oxidative stress in the development of DIO by modulating β3-adrenoceptor mechanisms and point to the PVN as an underlying neural site.


Heinrich E. Lob, Jiunn Song, Chansol Hurr, Alvin Chung, Colin N. Young, Allyn L. Mark, Robin L. Davisson


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.