Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood
Liudmila L. Mazaleuskaya, John A. Lawson, Xuanwen Li, Gregory Grant, Clementina Mesaros, Tilo Grosser, Ian A. Blair, Emanuela Ricciotti, Garret A. FitzGerald
Liudmila L. Mazaleuskaya, John A. Lawson, Xuanwen Li, Gregory Grant, Clementina Mesaros, Tilo Grosser, Ian A. Blair, Emanuela Ricciotti, Garret A. FitzGerald
View: Text | PDF
Resource and Technical Advance Inflammation Therapeutics

A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood

  • Text
  • PDF
Abstract

Current methods of drug screening in human blood focus on the immediate products of the affected pathway and mostly rely on approaches that lack sensitivity and the capacity for multiplex analysis. We have developed a sensitive and selective method based on ultra-performance liquid chromatography–tandem mass spectrometry to scan the effect of drugs on the bioactive eicosanoid lipidome in vitro and ex vivo. Using small sample sizes, we can reproducibly measure a broad spectrum of eicosanoids in human blood and capture drug-induced substrate rediversion and unexpected shifts in product formation. Microsomal prostaglandin E synthase-1 (mPGES-1) is an antiinflammatory drug target alternative to COX-1/-2. Contrasting effects of targeting mPGES-1 versus COX-1/-2, due to differential substrate shifts across the lipidome, were observed and can be used to rationalize and evaluate drug combinations. Finally, the in vitro results were extrapolated to ex vivo studies by administration of the COX-2 inhibitor, celecoxib, to volunteers, illustrating how this approach can be used to integrate preclinical and clinical studies during drug development.

Authors

Liudmila L. Mazaleuskaya, John A. Lawson, Xuanwen Li, Gregory Grant, Clementina Mesaros, Tilo Grosser, Ian A. Blair, Emanuela Ricciotti, Garret A. FitzGerald

×

Figure 6

Ex vivo effects of the COX-2 inhibitor, celecoxib, on plasma lipidome in healthy subjects.

Options: View larger image (or click on image) Download as PowerPoint
Ex vivo effects of the COX-2 inhibitor, celecoxib, on plasma lipidome in...
Whole blood was collected before (pre-dose) and 3 hours after (post-dose) celecoxib or placebo administration. Plasma levels of prostaglandin E2 (PGE2) (A), prostaglandin F2α (PGF2α) (B), thromboxane B2 (TxB2) (C), and 15-hydroxyeicosatetraenoic acid (15-HETE) (D) expressed as percentage of pre-dose control. Ex vivo human whole blood assay and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) analysis were performed as described in Methods. Red and blue dots represent female and male subjects, respectively. Data represent mean ± SEM. Unpaired, 2-tailed t test, n = 10/group.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts