Despite identification of causal genes for various lipodystrophy syndromes, the molecular basis of some peculiar lipodystrophies remains obscure. In an African-American pedigree with a novel autosomal dominant, atypical familial partial lipodystrophy (FPLD), we performed linkage analysis for candidate regions and whole-exome sequencing to identify the disease-causing mutation. Affected adults reported marked loss of fat from the extremities, with excess fat in the face and neck at age 13–15 years, and developed metabolic complications later. A heterozygous g.112837956C>T mutation on chromosome 10 (c.202C>T, p.Leu68Phe) affecting a highly conserved residue in adrenoceptor α 2A (
Abhimanyu Garg, Shireesha Sankella, Chao Xing, Anil K. Agarwal
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 472 | 217 |
69 | 56 | |
Figure | 389 | 19 |
Table | 41 | 0 |
Supplemental data | 35 | 8 |
Citation downloads | 58 | 0 |
Totals | 1,064 | 300 |
Total Views | 1,364 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.