Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration
Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor
Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor
View: Text | PDF
Research Article Cell biology

Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration

  • Text
  • PDF
Abstract

Osteoarthritis (OA) of spine (facet joints [FJs]) is one of the major causes of severe low back pain and disability worldwide. The degeneration of facet cartilage is a hallmark of FJ OA. However, endogenous mechanisms that initiate degeneration of facet cartilage are unknown, and there are no disease-modifying therapies to stop FJ OA. In this study, we have identified microRNAs (small noncoding RNAs) as mediators of FJ cartilage degeneration. We first established a cohort of patients with varying degrees of facet cartilage degeneration (control group: normal or mild facet cartilage degeneration; FJ OA group: moderate to severe facet cartilage degeneration) and then screened 2,100 miRNAs and identified 2 miRNAs (miR-181a-5p and miR-4454) that were significantly elevated in FJ OA cartilage compared with control facet cartilage. We further explored their role, function, and signaling mechanisms using computational, in vitro functional, and in vivo studies. We specifically indicate that miR-181a-5p and miR-4454 are involved in promoting inflammatory, catabolic, and cell death activity in FJ chondrocytes. This is the first report to our knowledge that identifies miR-181a-5p and miR-4454 as mediators of cartilage degeneration in FJs and potential therapeutic targets for stopping cartilage degeneration.

Authors

Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 589 69
PDF 140 28
Figure 406 0
Table 39 0
Supplemental data 30 2
Citation downloads 158 0
Totals 1,362 99
Total Views 1,461
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts