Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Atherogenesis and metabolic dysregulation in LDL receptor–knockout rats
Srinivas D. Sithu, … , Aruni Bhatnagar, Sanjay Srivastava
Srinivas D. Sithu, … , Aruni Bhatnagar, Sanjay Srivastava
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e86442. https://doi.org/10.1172/jci.insight.86442.
View: Text | PDF
Research Article Cardiology Vascular biology

Atherogenesis and metabolic dysregulation in LDL receptor–knockout rats

  • Text
  • PDF
Abstract

Mechanisms of atherogenesis have been studied extensively in genetically engineered mice with disturbed cholesterol metabolism such as those lacking either the LDL receptor (Ldlr) or apolipoprotein E (apoe). Few other animal models of atherosclerosis are available. WT rabbits or rats, even on high-fat or high-cholesterol diets, develop sparse atherosclerotic lesions. We examined the effects of Ldlr deletion on lipoprotein metabolism and atherosclerotic lesion formation in Sprague-Dawley rats. Deletion of Ldlr resulted in the loss of the LDLR protein and caused a significant increase in plasma total cholesterol and triglycerides. On normal chow, Ldlr-KO rats gained more weight and were more glucose intolerant than WT rats. Plasma proprotein convertase subtilisin kexin 9 (PCSK9) and leptin levels were higher and adiponectin levels were lower in KO than WT rats. On the Western diet, the KO rats displayed exaggerated obesity and age-dependent increases in glucose intolerance. No appreciable aortic lesions were observed in KO rats fed normal chow for 64 weeks or Western diet for 16 weeks; however, after 34–52 weeks of Western diet, the KO rats developed exuberant atherosclerotic lesions in the aortic arch and throughout the abdominal aorta. The Ldlr-KO rat may be a useful model for studying obesity, insulin resistance, and early-stage atherosclerosis.

Authors

Srinivas D. Sithu, Marina V. Malovichko, Krista A. Riggs, Nalinie S. Wickramasinghe, Millicent G. Winner, Abhinav Agarwal, Rihab E. Hamed-Berair, Anuradha Kalani, Daniel W. Riggs, Aruni Bhatnagar, Sanjay Srivastava

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 532 156
PDF 106 35
Figure 372 3
Table 121 0
Supplemental data 42 4
Citation downloads 110 0
Totals 1,283 198
Total Views 1,481
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts