Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes
Gaurang Jhala, … , Thomas W.H. Kay, Balasubramanian Krishnamurthy
Gaurang Jhala, … , Thomas W.H. Kay, Balasubramanian Krishnamurthy
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86065. https://doi.org/10.1172/jci.insight.86065.
View: Text | PDF
Research Article

Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes

  • Text
  • PDF
Abstract

High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206–214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206–214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.

Authors

Gaurang Jhala, Jonathan Chee, Prerak M. Trivedi, Claudia Selck, Esteban N. Gurzov, Kate L. Graham, Helen E. Thomas, Thomas W.H. Kay, Balasubramanian Krishnamurthy

×

Usage data is cumulative from September 2022 through September 2023.

Usage JCI PMC
Text version 176 108
PDF 23 18
Figure 55 1
Supplemental data 9 6
Citation downloads 17 0
Totals 280 133
Total Views 413

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts