Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis
Rui André Saraiva Raposo, Miguel de Mulder Rougvie, Dominic Paquin-Proulx, Phillip M. Brailey, Vinicius D. Cabido, Paul M. Zdinak, Allison S. Thomas, Szu-han Huang, Greta A. Beckerle, Richard B. Jones, Douglas F. Nixon
Rui André Saraiva Raposo, Miguel de Mulder Rougvie, Dominic Paquin-Proulx, Phillip M. Brailey, Vinicius D. Cabido, Paul M. Zdinak, Allison S. Thomas, Szu-han Huang, Greta A. Beckerle, Richard B. Jones, Douglas F. Nixon
View: Text | PDF
Research Article AIDS/HIV Immunology

IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis

  • Text
  • PDF
Abstract

HIV-1 persistence in latent reservoirs during antiretroviral therapy (ART) is the main obstacle to virus eradication. To date, there is no marker that adequately identifies latently infected CD4+ T cells in vivo. Using a well-established ex vivo model, we generated latently infected CD4+ T cells and identified interferon-induced transmembrane protein 1 (IFITM1), a transmembrane antiviral factor, as being overexpressed in latently infected cells. By targeting IFITM1, we showed the efficient and specific killing of a latently infected cell line and CD4+ T cells from ART-suppressed patients through antibody-dependent cytolysis. We hypothesize that IFITM1 could mark natural reservoirs, identifying an immune target for killing of latently infected cells. These novel insights could be explored to develop clinical therapeutic approaches to effectively eradicate HIV-1.

Authors

Rui André Saraiva Raposo, Miguel de Mulder Rougvie, Dominic Paquin-Proulx, Phillip M. Brailey, Vinicius D. Cabido, Paul M. Zdinak, Allison S. Thomas, Szu-han Huang, Greta A. Beckerle, Richard B. Jones, Douglas F. Nixon

×

Full Text PDF

Download PDF (725.79 KB)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts